ترغب بنشر مسار تعليمي؟ اضغط هنا

Vorticity and Particle Polarization in Relativistic Heavy-Ion Collisions

141   0   0.0 ( 0 )
 نشر من قبل Yuri B. Ivanov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energy range are presented. The 3FD simulations indicate that energy dependence of the observed global polarization of hyperons in the midrapidity region is a consequence of the decrease of the vorticity in the central region with the collision energy rise because of pushing out the vorticity field into the fragmentation regions. At high collision energies this pushing-out results in a peculiar vortical structure consisting of two vortex rings: one ring in the target fragmentation region and another one in the projectile fragmentation region with matter rotation being opposite in these two rings.



قيم البحث

اقرأ أيضاً

The hot and dense matter generated in heavy-ion collisions contains intricate vortical structure in which the local fluid vorticity can be very large. Such vorticity can polarize the spin of the produced particles. We study the event-by-event generat ion of the so-called thermal vorticity in Au + Au collisions at energy region $sqrt{s}=7.7-200$ GeV and calculate its time evolution, spatial distribution, etc., in a multiphase transport (AMPT) model. We then compute the spin polarization of the $Lambda$ and $bar{Lambda}$ hyperons as a function of $sqrt{s}$, transverse momentum $p_T$, rapidity, and azimuthal angle. Furthermore, we study the harmonic flow of the spin, in a manner analogous to the harmonic flow of the particle number. The measurement of the spin harmonic flow may provide a way to probe the vortical structure in heavy-ion collisions. We also discuss the spin polarization of $Xi^0$ and $Omega^-$ hyperons which may provide further information about the spin polarization mechanism of hadrons.
101 - Sergei A. Voloshin 2017
The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.
We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the v orticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.
We show that the inclusion of a recently found additional term of the spin polarization vector at local equilibrium which is linear in the symmetrized gradients of the velocity field, and the assumption of hadron production at constant temperature re store the quantitative agreement between hydrodynamic model predictions and local polarization measurements in relativistic heavy ion collisions at $sqrt s_{NN}= 200$ GeV. The longitudinal component of the spin polarization vector turns out to be very sensitive to the temperature value, with a good fit around 155 MeV. The implications of this finding are discussed.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr um and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا