ﻻ يوجد ملخص باللغة العربية
Within the approach to doubly special relativity (DSR) suggested by Magueijo and Smolin, a new algebraically justified rule of so-called $kappa$-addition for the energies of identical particles is proposed. This rule permits to introduce the nonlinear $kappa$-dependent Hamiltonian for one-mode multi-photon (sub)system. On its base, with different modes treated as independent, the thermodynamics of black-body radiation is explored within DSR, and main thermodynamic quantities are obtained. In their derivation, we use both the analytical tools within mean field approximation (MFA) and numerical evaluations based on exact formulas. The entropy of one-mode subsystem turns out to be finite (bounded). Another unusual result is the existence of threshold temperature above which radiation is present. Specific features of the obtained results are explained and illustrated with a number of plots. Comparison with some works of relevance is given.
The current status of Doubly Special Relativity research program is shortly presented. I dedicate this paper to my teacher and friend Professor Jerzy Lukierski on occasion of his seventieth birthday.
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form
We discuss a way to obtain the doubly special relativity kinematical rules (the deformed energy-momentum relation and the nonlinear Lorentz transformations of momenta) starting from a singular Lagrangian action of a particle with linearly realized SO
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general exp
In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetr