ﻻ يوجد ملخص باللغة العربية
We discuss a way to obtain the doubly special relativity kinematical rules (the deformed energy-momentum relation and the nonlinear Lorentz transformations of momenta) starting from a singular Lagrangian action of a particle with linearly realized SO(1,4) symmetry group. The deformed energy-momentum relation appears in a special gauge of the model. The nonlinear transformations of momenta arise from the requirement of covariance of the chosen gauge.
In this paper we discuss how the Magueijo-Smolin Doubly Special Relativity proposal may obtained from a singular Lagrangian action. The deformed energy-momentum dispersion relation rises as a particular gauge, whose covariance imposes the non-linear
The current status of Doubly Special Relativity research program is shortly presented. I dedicate this paper to my teacher and friend Professor Jerzy Lukierski on occasion of his seventieth birthday.
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form
Within the approach to doubly special relativity (DSR) suggested by Magueijo and Smolin, a new algebraically justified rule of so-called $kappa$-addition for the energies of identical particles is proposed. This rule permits to introduce the nonlinea
We derive new identities for the thermodynamic variables of five-dimensional, asymptotically flat, stationary and biaxisymmetric vacuum black holes. These identities depend on the topology of the solution and include contributions arising from certai