ﻻ يوجد ملخص باللغة العربية
In the context of computational social choice, we study voting methods that assign a set of winners to each profile of voter preferences. A voting method satisfies the property of positive involvement (PI) if for any election in which a candidate x would be among the winners, adding another voter to the election who ranks x first does not cause x to lose. Surprisingly, a number of standard voting methods violate this natural property. In this paper, we investigate different ways of measuring the extent to which a voting method violates PI, using computer simulations. We consider the probability (under different probability models for preferences) of PI violations in randomly drawn profiles vs. profile-coalition pairs (involving coalitions of different sizes). We argue that in order to choose between a voting method that satisfies PI and one that does not, we should consider the probability of PI violation conditional on the voting methods choosing different winners. We should also relativize the probability of PI violation to what we call voter potency, the probability that a voter causes a candidate to lose. Although absolute frequencies of PI violations may be low, after this conditioning and relativization, we see that under certain voting methods that violate PI, much of a voters potency is turned against them - in particular, against their desire to see their favorite candidate elected.
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that s
We propose a new single-winner election method (Schulze method) and prove that it satisfies many academic criteria (e.g. monotonicity, reversal symmetry, resolvability, independence of clones, Condorcet criterion, k-consistency, polynomial runtime).
Justified representation (JR) is a standard notion of representation in multiwinner approval voting. Not only does a JR committee always exist, but previous work has also shown through experiments that the JR condition can typically be fulfilled by g
Electoral control models ways of changing the outcome of an election via such actions as adding/deleting/partitioning either candidates or voters. To protect elections from such control attempts, computational complexity has been investigated and the
We discuss voting scenarios in which the set of voters (agents) and the set of alternatives are the same; that is, voters select a single representative from among themselves. Such a scenario happens, for instance, when a committee selects a chairper