ﻻ يوجد ملخص باللغة العربية
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval $[ell,s]$ of $[-1,1)$. An intricate relationship between Levenshtein-type upper bounds on cardinality of codes with inner products in $[ell,s]$ and lower bounds on the potential energy (for absolutely monotone interactions) for codes with inner products in $[ell,1)$ (when the cardinality of the code is kept fixed) is revealed and explained. Thereby, we obtain a new extension of Levenshtein bounds for such codes. The universality of our bounds is exhibited by a unified derivation and their validity for a wide range of codes and potential functions.
Let $X$ be a finite set in a complex sphere of $d$ dimension. Let $D(X)$ be the set of usual inner products of two distinct vectors in $X$. A set $X$ is called a complex spherical $s$-code if the cardinality of $D(X)$ is $s$ and $D(X)$ contains an im
We define a set inner product to be a function on pairs of convex bodies which is symmetric, Minkowski linear in each dimension, positive definite, and satisfies the natural analogue of the Cauchy-Schwartz inequality (which is not implied by the othe
In this paper we present the results of computer searches using a variation of an energy minimization algorithm used by Kottwitz for finding good spherical codes. We prove that exact codes exist by representing the inner products between the vectors
Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds pro
We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense -- they cannot be improved by employing polynomials of the same or lower degrees in the De