ﻻ يوجد ملخص باللغة العربية
In this paper we present the results of computer searches using a variation of an energy minimization algorithm used by Kottwitz for finding good spherical codes. We prove that exact codes exist by representing the inner products between the vectors as algebraic numbers. For selected interesting cases, we include detailed discussion of the configurations. Of particular interest are the 20-point code in $mathbb{R}^6$ and the 24-point code in $mathbb{R}^7$, which are both the union of two cross polytopes in parallel hyperplanes. Finally, we catalogue all of the codes we have found.
We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense -- they cannot be improved by employing polynomials of the same or lower degrees in the De
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval $[ell,s]$ of $[-1,1)$. An intricate relationship between Levenshtein-type upper bounds on cardinality of codes
In this paper we prove upper and lower bounds on the minimal spherical dispersion. In particular, we see that the inverse $N(varepsilon,d)$ of the minimal spherical dispersion is, for fixed $varepsilon>0$, up to logarithmic terms linear in the dimens
In this paper, we use the linear programming approach to find new upper bounds for the moments of isotropic measures. These bounds are then utilized for finding lower packing bounds and energy bounds for projective codes. We also show that the obtain
This paper investigates the behaviour of the kissing number $kappa(n, r)$ of congruent radius $r > 0$ spheres in $mathbb{S}^n$, for $ngeq 2$. Such a quantity depends on the radius $r$, and we plot the approximate graph of $kappa(n, r)$ with relativel