ﻻ يوجد ملخص باللغة العربية
Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds product is the quotient of two holomorphic ones. The proofs of both results rely on the properties of vector valued Eisenstein series for the Weil representation.
We show that every Fricke invariant meromorphic modular form for $Gamma_0(N)$ whose divisor on $X_0(N)$ is defined over $mathbb{Q}$ and supported on Heegner divisors and the cusps is a generalized Borcherds product associated to a harmonic Maass form
Bruinier and Ono recently developed the theory of generalized Borcherds products, which uses coefficients of certain Maass forms as exponents in infinite product expansions of meromorphic modular forms. Using this, one can use classical results on co
We present some applications of the Kudla-Millson and the Millson theta lift. The two lifts map weakly holomorphic modular functions to vector valued harmonic Maass forms of weight $3/2$ and $1/2$, respectively. We give finite algebraic formulas for
We study the distribution of extensions of a number field $k$ with fixed abelian Galois group $G$, from which a given finite set of elements of $k$ are norms. In particular, we show the existence of such extensions. Along the way, we show that the Ha
We give an algorithm that finds a sequence of approximations with Dirichlet coefficients bounded by a constant only depending on the dimension. The algorithm uses the LLL-algorithm for lattice basis reduction. We present a version of the algorithm that runs in polynomial time of the input.