ﻻ يوجد ملخص باللغة العربية
Irreversible processes are frequently adopted to account for the entropy increase in classical thermodynamics. However, the corresponding physical origins are not always clear, e.g. in a free expansion process, a typical model in textbooks. In this letter, we study the entropy change during free expansion for a particle with the thermal de Broglie wavelength ($lambda_{T}$) in a one-dimensional square trap with size $L$. By solely including quantum dephasing as an irreversible process, we recover classical result of entropy increase in the classical region ($Lgglambda_{T}$), while predict prominent discrepancies in the quantum region ($Llllambda_{T}$) because of non-equilibrium feature of trapped atoms after expansion. It is interesting to notice that the dephasing, though absent in classical system, is critical to clarify mysteries in classical thermodynamics.
How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. B
Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure
We use trapped atomic ions forming a hybrid Coulomb crystal, and exploit its phonons to study an isolated quantum system composed of a single spin coupled to an engineered bosonic environment. We increase the complexity of the system by adding ions a
In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model system of interacting particles
The nature of the behaviour of an isolated many-body quantum system periodically driven in time has been an open question since the beginning of quantum mechanics. After an initial transient, such a system is known to synchronize with the driving; in