ﻻ يوجد ملخص باللغة العربية
We use trapped atomic ions forming a hybrid Coulomb crystal, and exploit its phonons to study an isolated quantum system composed of a single spin coupled to an engineered bosonic environment. We increase the complexity of the system by adding ions and controlling coherent couplings and, thereby, we observe the emergence of thermalization: Time averages of spin observables approach microcanonical averages while related fluctuations decay. Our platform features precise control of system size, coupling strength, and isolation from the external world to explore the dynamics of equilibration and thermalization.
Irreversible processes are frequently adopted to account for the entropy increase in classical thermodynamics. However, the corresponding physical origins are not always clear, e.g. in a free expansion process, a typical model in textbooks. In this l
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is a crucial for modern physics. Using a ladder-type superconducting qua
We experimentally study the ergodic dynamics of a 1D array of 12 superconducting qubits with a transverse field, and identify the regimes of strong and weak thermalization with different initial states. We observe convergence of the local observable
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic re
Statistical mechanics is one of the most comprehensive theories in physics. From a boiling pot of water to the complex dynamics of quantum many-body systems it provides a successful connection between the microscopic dynamics of atoms and molecules a