ترغب بنشر مسار تعليمي؟ اضغط هنا

Typical and extreme entropies of long-lived isolated quantum systems

153   0   0.0 ( 0 )
 نشر من قبل Dana Faiez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model system of interacting particles in a one-dimensional lattice, we numerically solve for the full quantum behavior of the system. We characterize the fluctuations, and find the maximal, minimal, and typical entropy of each type that the system can eventually attain through its evolution. While both entropies are low for some special configurations and high for more generic ones, there are several fundamental differences in their behavior. Observational entropy behaves in accord with classical Boltzmann entropy (e.g. equilibrium is a condition of near-maximal entropy and uniformly distributed particles, and minimal entropy is a very compact configuration). Entanglement entropy is rather different: minimal entropy empties out one partition while maximal entropy apportions the particles between the partitions, and neither is typical. Beyond these qualitative results, we characterize both entropies and their fluctuations in some detail as they depend on temperature, particle number, and box size.



قيم البحث

اقرأ أيضاً

The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issu e by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
We analyze the dynamics of periodically-driven (Floquet) Hamiltonians with short- and long-range interactions, finding clear evidence for a thermalization time, $tau^*$, that increases exponentially with the drive frequency. We observe this behavior, both in systems with short-ranged interactions, where our results are consistent with rigorous bounds, and in systems with long-range interactions, where such bounds do not exist at present. Using a combination of heating and entanglement dynamics, we explicitly extract the effective energy scale controlling the rate of thermalization. Finally, we demonstrate that for times shorter than $tau^*$, the dynamics of the system is well-approximated by evolution under a time-independent Hamiltonian $D_{mathrm{eff}}$, for both short- and long-range interacting systems.
320 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance s of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, e ven those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
136 - Michael Kastner 2011
The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r^{-alpha} at large distances r with an exponent $alpha$ not exceeding the lattice dimension. For a large class of observables and i nitial states, the time evolution of expectation values can be calculated. We prove analytically that, at a given instant of time t and for sufficiently large system size N, the expectation value of some observable <A>(t) will practically be unchanged from its initial value <A>(0). This finding implies that, for large enough N, equilibration effectively occurs on a time scale beyond the experimentally accessible one and will not be observed in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا