ﻻ يوجد ملخص باللغة العربية
We combine few- and many-body degrees of freedom in a model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core-nucleus surrounded by two valence nucleons. We treat the core in the mean-field approximation and use the same effective Skyrme interaction between both core and valence nucleons. We apply the model to $^{26}$O where we reproduce the known experimental data as well as phenomenological models with more parameters. The decay of the ground state is found to proceed directly into the continuum without effect of the virtual sequential decay through the well reproduced $d_{3/2}$-resonance of $^{25}$O.
On the basis of the Faddeev integral equations method and the Watson- Feshbach concept of the effective (optical) interaction potential, the first fully consistent three-body approach to the description of the penetration of a charged particle throug
We investigate the effects of chiral NNLO three-nucleon force (3NF) on nucleus-nucleus elastic scattering, using a standard prescription based on the Brueckner-Hartree-Fock method and the g-matrix folding model. The g-matrix calculated in nuclear mat
$K^-$ atomic data are used to test several models of the $K^-$ nucleus interaction. The t($rho$)$rho$ optical potential, due to coupled channel models incorporating the $Lambda$(1405) dynamics, fails to reproduce these data. A standard relativistic m
The three-body $KKbar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. I
We compare the predictions of the SuSAv2 model including two-particle two-hole meson-exchange currents with the recent JLab data for inclusive electron scattering on three different targets (C, Ar and Ti). The agreement is very good over the full ene