ﻻ يوجد ملخص باللغة العربية
On the basis of the Faddeev integral equations method and the Watson- Feshbach concept of the effective (optical) interaction potential, the first fully consistent three-body approach to the description of the penetration of a charged particle through the Coulomb field of a two-particle bound complex (composed of one charged and one neutral particles) has been developed. A general formalism has been elaborated and on its basis, to a first approximation in the Sommerfeld parameter, the influence of the nuclear structure on the probability of the penetration of a charged particle (the muon, the pion, the kaon and the proton) through the Gamow barrier of a two-fragment nucleus (the deuteron and the two lightest lambda hypernuclei, lambda hypertriton and lambda hyperhelium-5, has been calculated and studied.
We combine few- and many-body degrees of freedom in a model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core-nucleus surrounded by two valence nu
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s
Coulomb breakup strengths of 11Li into a three-body 9Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body ``10Li+n and three-body ``9Li+n+n continuu
We extend a new treatment proposed for two-nucleon (2N) and three-nucleon (3N) bound states to 2N scattering. This technique takes momentum vectors as variables, thus, avoiding partial wave decomposition, and handles spin operators analytically. We a
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite