ﻻ يوجد ملخص باللغة العربية
$K^-$ atomic data are used to test several models of the $K^-$ nucleus interaction. The t($rho$)$rho$ optical potential, due to coupled channel models incorporating the $Lambda$(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the $Lambda$(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit $K^-$ optical potential is found to be strongly attractive, with a depth of 180 pm 20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.
The DIRHB package consists of three Fortran computer codes for the calculation of the ground-state properties of even-even atomic nuclei using the framework of relativistic self-consistent mean-field models. Each code corresponds to a particular choi
The strong interaction of antikaons (K-) with nucleons and nuclei in the low energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bou
The strong interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound st
A Reflection ASymmetric Relativistic Mean Field (RAS-RMF) approach is developed by expanding the equations of motion for both the nucleons and the mesons on the eigenfunctions of the two-center harmonic-oscillator potential. The efficiency and reliab
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, w