ﻻ يوجد ملخص باللغة العربية
We compute the masses of the pseudoscalar mesons $pi^+$ , $K^0$ and $D^+$ at finite temperature and baryon chemical potential. The computations are based on a symmetry- preserving Dyson-Schwinger equation treatment of a vector-vector four quark contact interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for
We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the str
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Di
Combining the thermal operator representation with the dispersion relation in QED at finite temperature and chemical potential, we determine the complete retarded photon self-energy only from its absorptive part at zero temperature. As an application
In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resu