ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-loop HTLpt thermodynamics at finite temperature and chemical potential

97   0   0.0 ( 0 )
 نشر من قبل Aritra Bandyopadhyay
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resulting thermodynamic potential enables us to evaluate different thermodynamic quantities including pressure and various quark number susceptibilities (QNS). Comparison between our analytic results for those thermodynamic quantities with the available lattice data shows a good agreement.



قيم البحث

اقرأ أيضاً

We compare higher moments of baryon numbers measured at the RHIC heavy ion collision experiments with those by the lattice QCD calculations. We employ the canonical approach, in which we can access the real chemical potential regions avoiding the sig n problem. In the lattice QCD simulations, we study several fits of the number density in the pure imaginary chemical potential, and analyze how these fits affects behaviors at the real chemical potential. In the energy regions between $sqrt{s}_{NN}$=19.6 and 200 GeV, the susceptibility calculated at $T/T_c=0.93$ is consistent with experimental data at $0 le mu_B/T < 1.5$, while the kurtosis shows similar behavior with that of the experimental data in the small $mu_B/T$ regions $0 le mu_B/T < 0.3$. The experimental data at $sqrt{s}_{NN}=$ 11.5 shows quite different behavior. The lattice result in the deconfinement region,$T/T_c=1.35$, is far from experimental data.
We compute the masses of the pseudoscalar mesons $pi^+$ , $K^0$ and $D^+$ at finite temperature and baryon chemical potential. The computations are based on a symmetry- preserving Dyson-Schwinger equation treatment of a vector-vector four quark conta ct interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.
We present a framework to compute the responses of hadron masses to the chemical potential in lattice QCD simulations. As a first trial, the screening mass of the pseudoscalar meson and its first and second responses are evaluated. We present results on a $16times 8^2times 4$ lattice with two flavors of staggered quarks below and above $T_c$. The responses to both the isoscalar and isovector chemical potentials are obtained. They show different behavior in the low and the high temperature phases, which may be explained as a consequence of chiral symmetry breaking and restoration, respectively.
Responses to chemical potential of the pseudoscalar meson screening mass and the chiral condensate in lattice QCD are investigated. On a $16 times 8^2 times 4$ lattice with two flavors of staggered quarks the first and second responses below and abov e $T_c$ are evaluated. Different behavior in the low and the high temperature phases are observed, which may be explained as a consequence of the chiral symmetry breaking and restoration.
94 - Charles Gale , 1997
We compute the mass shifts and mixing of the Omega and Phi mesons at finite temperature due to scattering from thermal pions. The Rho and b_1 mesons are important intermediate states. Up to a temperature of 140 MeV the Omega mass increases by 12 MeV and the Phi mass decreases by 0.6 MeV. The change in mixing angles is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا