ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD at finite chemical potential in and out-of equilibrium

121   0   0.0 ( 0 )
 نشر من قبل Olga Soloveva
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the strongly interacting (non-perturbative) QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity and bulk viscosity over entropy density, diffusion coefficients, electric conductivity etc. versus temperature and baryon chemical potential. Based on a microscopic transport description of heavy-ion collisions we, furthermore, discuss which observables are sensitive to the QGP formation and its properties.



قيم البحث

اقرأ أيضاً

152 - O. Soloveva , P. Moreau , L. Oliva 2020
We study the influence of the baryon chemical potential $mu_B$ on the properties of the Quark-Gluon-Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamic al QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice Quantum Chromodynamics (QCD). We calculate the transport coefficients such as the ratio of shear viscosity $eta$ and bulk viscosity $zeta$ over entropy density $s$, i.e., $eta/s$ and $zeta/s$ in the $(T,mu_B)$ plane and compare to other model results available at $mu_B =0$. The out-of equilibrium study of the QGP is performed within the Parton-Hadron-String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections (based on the DQPM propagators and couplings) evaluated at the actual temperature $T$ and baryon chemical potential $mu_B$ in each individual space-time cell of the partonic scattering. The traces of their $mu_B$ dependences are investigated in different observables for relativistic heavy-ion collisions with a focus on the directed and elliptic flow coefficients $v_1, v_2$ in the energy range 7.7 GeV $le sqrt{s_{NN}}le 200$ GeV.
330 - O. Soloveva , P. Moreau , L. Oliva 2020
We study the influence of the baryon chemical potential $mu_B$ on the properties of the Quark-Gluon-Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamic al QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity $eta$ and bulk viscosity $zeta$ over entropy density $s$, i.e. $eta/s$ and $zeta/s$ in the $(T,mu)$ plane and compare to other model results available at $mu_B =0$. The out-of equilibrium study of the QGP is performed within the Parton-Hadron-String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections based on the DQPM and the evaluated at actual temperature $T$ and baryon chemical potential $mu_B$ in each individual space-time cell where partonic scattering takes place. The traces of their $mu_B$ dependences are investigated in different observables for symmetric Au+Au and asymmetric Cu+Au collisions such as rapidity and $m_T$- distributions and directed and elliptic flow coefficients $v_1, v_2$ in the energy range 7.7 GeV $le sqrt{s_{NN}}le 200$ GeV.
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.
105 - Romulo Rougemont 2016
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Di laton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.
We argue that hadron multiplicities in central high energy nucleus-nucleus collisions are established very close to the phase boundary between hadronic and quark matter. In the hadronic picture this can be described by multi-particle collisions whose importance is strongly enhanced due to the high particle density in the phase transition region. As a consequence of the rapid fall-off of the multi-particle scattering rates the experimentally determined chemical freeze-out temperature is a good measure of the phase transition temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا