ترغب بنشر مسار تعليمي؟ اضغط هنا

On the physical realizability of quantum stochastic walks

63   0   0.0 ( 0 )
 نشر من قبل Bruno G. Taketani
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We show that general implementations would require the complete solution of the underlying unitary dynamics, and sophisticated reservoir engineering, thus weakening the benefits of experimental investigations.



قيم البحث

اقرأ أيضاً

This paper considers the physical realizability condition for multi-level quantum systems having polynomial Hamiltonian and multiplicative coupling with respect to several interacting boson fields. Specifically, it generalizes a recent result the aut hors developed for two-level quantum systems. For this purpose, the algebra of SU(n) was incorporated. As a consequence, the obtained condition is given in terms of the structure constants of SU(n).
We introduce an analytically treatable spin decoherence model for quantum walk on a line that yields the exact position probability distribution of an unbiased classical random walk at all-time scales. This spin decoherence model depicts a quantum ch annel in which simultaneous bit and phase flip operator is applied at random on the coin state. Based on this result we claim that there exist certain quantum channels that can produce exact classical statistical properties for a given one-dimensional quantum walk. Moreover, from the perspective of quantum computing, decoherence model introduced in this study may have useful algorithmic applications when it is applied on quantum walks with non-local initial states.
In this paper we define new Monte Carlo type classical and quantum hitting times, and we prove several relationships among these and the already existing Las Vegas type definitions. In particular, we show that for some marked state the two types of h itting time are of the same order in both the classical and the quantum case. Further, we prove that for any reversible ergodic Markov chain $P$, the quantum hitting time of the quantum analogue of $P$ has the same order as the square root of the classical hitting time of $P$. We also investigate the (im)possibility of achieving a gap greater than quadratic using an alternative quantum walk. Finally, we present new quantum algorithms for the detection and finding problems. The complexities of both algorithms are related to the new, potentially smaller, quantum hitting times. The detection algorithm is based on phase estimation and is particularly simple. The finding algorithm combines a similar phase estimation based procedure with ideas of Tulsi from his recent theorem for the 2D grid. Extending his result, we show that for any state-transitive Markov chain with unique marked state, the quantum hitting time is of the same order for both the detection and finding problems.
76 - Kai Zhao , Wei-Shih Yang 2021
We consider the discrete time quantum random walks on a Sierpinski gasket. We study the hitting probability as the level of fractal goes to infinity in terms of their localization exponents $beta_w$ , total variation exponents $delta_w$ and relative entropy exponents $eta_w$ . We define and solve the amplitude Green functions recursively when the level of the fractal graph goes to infinity. We obtain exact recursive formulas for the amplitude Green functions, based on which the hitting probabilities and expectation of the first-passage time are calculated. Using the recursive formula with the aid of Monte Carlo integration, we evaluate their numerical values. We also show that when the level of the fractal graph goes to infinity, with probability 1, the quantum random walks will return to origin, i.e., the quantum walks on Sierpinski gasket are recurrent.
We consider the Grover walk on infinite trees from the view point of spectral analysis. From the previous works, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk, which involves localization of its behavior and recovers the previous works. Our result suggests that the Grover walk on infinite trees may be regarded as a limit of the quantum walk induced by the isotropic random walk with the Dirichlet boundary condition at the $n$-th depth rather than one with the Neumann boundary condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا