ﻻ يوجد ملخص باللغة العربية
This paper considers the physical realizability condition for multi-level quantum systems having polynomial Hamiltonian and multiplicative coupling with respect to several interacting boson fields. Specifically, it generalizes a recent result the authors developed for two-level quantum systems. For this purpose, the algebra of SU(n) was incorporated. As a consequence, the obtained condition is given in terms of the structure constants of SU(n).
Coherent feedback control considers purely quantum controllers in order to overcome disadvantages such as the acquisition of suitable quantum information, quantum error correction, etc. These approaches lack a systematic characterization of quantum r
This paper aims to provide conditions under which a quantum stochastic differential equation can serve as a model for interconnection of a bilinear system evolving on an operator group SU(2) and a linear quantum system representing a quantum harmonic
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a c
The goal of this paper is to provide conditions under which a quantum stochastic differential equation (QSDE) preserves the commutation and anticommutation relations of the SU(n) algebra, and thus describes the evolution of an open n-level quantum sy
A periodically driven quantum system with avoided-level crossing experiences both non-adiabatic transitions and wave-function phase changes. These result in coherent interference fringes in the systems occupation probabilities. For qubits, with repel