ﻻ يوجد ملخص باللغة العربية
An infinite projected entangled-pair state (iPEPS) is a variational tensor network ansatz for 2D wave functions in the thermodynamic limit where the accuracy can be systematically controlled by the bond dimension $D$. We show that for the doped Hubbard model in the strongly correlated regime ($U/t=8$, $n=0.875$) iPEPS yields lower variational energies than state-of-the-art variational methods in the large 2D limit, which demonstrates the competitiveness of the method. In order to obtain an accurate estimate of the energy in the exact infinite $D$ limit we introduce and test an extrapolation technique based on a truncation error computed in the iPEPS imaginary time evolution algorithm. The extrapolated energies are compared with accurate quantum Monte Carlo results at half filling and with various other methods in the doped, strongly correlated regime.
The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite e
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in t
We present an extension of a framework for simulating single quasiparticle or collective excitations on top of strongly correlated quantum many-body ground states using infinite projected entangled pair states, a tensor network ansatz for two-dimensi