ﻻ يوجد ملخص باللغة العربية
We present an extension of a framework for simulating single quasiparticle or collective excitations on top of strongly correlated quantum many-body ground states using infinite projected entangled pair states, a tensor network ansatz for two-dimensional wave functions in the thermodynamic limit. Our approach performs a systematic summation of locally perturbed states in order to obtain excited eigenstates localized in momentum space, using the corner transfer matrix method, and generalizes the framework to arbitrary unit cell sizes, the implementation of global Abelian symmetries and fermionic systems. Results for several test cases are presented, including the transverse Ising model, the spin-$frac{1}{2}$ Heisenberg model and a free fermionic model, to demonstrate the capability of the method to accurately capture dispersions. We also provide insight into the nature of excitations at the $k=(pi,0)$ point of the Heisenberg model.
The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite e
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in t
The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to t