ﻻ يوجد ملخص باللغة العربية
The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite entangled pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.
An infinite projected entangled-pair state (iPEPS) is a variational tensor network ansatz for 2D wave functions in the thermodynamic limit where the accuracy can be systematically controlled by the bond dimension $D$. We show that for the doped Hubba
We present an extension of a framework for simulating single quasiparticle or collective excitations on top of strongly correlated quantum many-body ground states using infinite projected entangled pair states, a tensor network ansatz for two-dimensi
We analyze a criterion which guarantees that the ground states of certain many body systems are stable under perturbations. Specifically, we consider PEPS, which are believed to provide an efficient description, based on local tensors, for the low en
We present a scheme to perform an iterative variational optimization with infinite projected entangled-pair states (iPEPS), a tensor network ansatz for a two-dimensional wave function in the thermodynamic limit, to compute the ground state of a local
Variational Monte Carlo studies employing projected entangled-pair states (PEPS) have recently shown that they can provide answers on long-standing questions such as the nature of the phases in the two-dimensional $J_1 - J_2$ model. The sampling in t