ﻻ يوجد ملخص باللغة العربية
In general the endomorphisms of a non-abelian group do not form a ring under the operations of addition and composition of functions. Several papers have dealt with the ring of functions defined on a group which are endomorphisms when restricted to the elements of a cover of the group by abelian subgroups. We give an algorithm which allows us to determine the elements of the ring of functions of a finite $p$-group which arises in this manner when the elements of the cover are required to be either cyclic or elementary abelian of rank $2$. This enables us to determine the actual structure of such a ring as a subdirect product. A key part of the argument is the construction of a graph whose vertices are the subgroups of order $p$ and whose edges are determined by the covering.
We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate co
The prime graph question asks whether the Gruenberg-Kegel graph of an integral group ring $mathbb Z G$ , i.e. the prime graph of the normalised unit group of $mathbb Z G$ coincides with that one of the group $G$. In this note we prove for finite grou
In support variety theory, representations of a finite dimensional (Hopf) algebra $A$ can be studied geometrically by associating any representation of $A$ to an algebraic variety using the cohomology ring of $A$. An essential assumption in this theo
For finite-dimensional Hopf algebras, their classification in characteristic $0$ (e.g. over $mathbb{C}$) has been investigated for decades with many fruitful results, but their structures in positive characteristic have remained elusive. In this pape
Using the Luthar--Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups $Co_1$, $Co_2$ and $Co_3$.