ﻻ يوجد ملخص باللغة العربية
We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate consequence is a well-known result of Roquette on the Schur indices of the simple components of group algebras of finite nilpotent groups. As an application, we obtain that the unit group of the integral group ring $Z G$ of a finite nilpotent group $G$ has a subgroup of finite index that is generated by three nilpotent groups for which we have an explicit description of their generators. Another application is a new construction of free subgroups in the unit group. In all the constructions dealt with, pairs of subgroups $(H,K)$, called strong Shoda pairs, and explicit constructed central elements $e(G,H,K)$ play a crucial role. For arbitrary finite groups we prove that the primitive central idempotents of the rational group algebras are rational linear combinations of such $e(G,H,K)$, with $(H,K)$ strong Shoda pairs in subgroups of $G$.
Using the Luthar--Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups $Co_1$, $Co_2$ and $Co_3$.
During the past three decades fundamental progress has been made on constructing large torsion-free subgroups (i.e. subgroups of finite index) of the unit group $U (Z G)$ of the integral group ring $Z G$ of a finite group $G$. These constructions rel
The prime graph question asks whether the Gruenberg-Kegel graph of an integral group ring $mathbb Z G$ , i.e. the prime graph of the normalised unit group of $mathbb Z G$ coincides with that one of the group $G$. In this note we prove for finite grou
A p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized uni
We give a full description of locally finite p-groups G such that the normalized group of units V(FG) of the group algebra FG over a field F of characteristic p has exponent 4.