ﻻ يوجد ملخص باللغة العربية
The prime graph question asks whether the Gruenberg-Kegel graph of an integral group ring $mathbb Z G$ , i.e. the prime graph of the normalised unit group of $mathbb Z G$ coincides with that one of the group $G$. In this note we prove for finite groups $G$ a reduction of the prime graph question to almost simple groups. We apply this reduction to finite groups $G$ whose order is divisible by at most three primes and show that the Gruenberg - Kegel graph of such groups coincides with the prime graph of $G$.
Using the Luthar--Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups $Co_1$, $Co_2$ and $Co_3$.
We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate co
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerles conjecture on prime graphs.
Using the Luthar--Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerles conjecture on prime graphs.
We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group $M_{24}$. As a consequence, for this group we confirm Kimmerles conjecture on prime graphs.