ﻻ يوجد ملخص باللغة العربية
We consider tropical hemispaces, defined as tropically convex sets whose complements are also tropically convex, and tropical semispaces, defined as maximal tropically convex sets not containing a given point. We introduce the concept of $(P,R)$-decomposition. This yields (to our knowledge) a new kind of representation of tropically convex sets extending the classical idea of representing convex sets by means of extreme points and rays. We characterize tropical hemispaces as tropically convex sets that admit a (P,R)-decomposition of certain kind. In this characterization, with each tropical hemispace we associate a matrix with coefficients in the completed tropical semifield, satisfying an extended rank-one condition. Our proof techniques are based on homogenization (lifting a convex set to a cone), and the relation between tropical hemispaces and semispaces.
We study the max-plus or tropical analogue of the notion of polar: the polar of a cone represents the set of linear inequalities satisfied by its elements. We establish an analogue of the bipolar theorem, which characterizes all the inequalities sati
In a previous paper, we announced a formula to compute Gromov-Witten and Welschinger invariants of some toric varieties, in terms of combinatorial objects called floor diagrams. We give here detailed proofs in the tropical geometry framework, in the
Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis. To handle larger instances, tropical analogues of classical linear programming results need to be developed. This motivation leads us to study the trop
Let $X$, $Y$ be sets and let $Phi$, $Psi$ be mappings with the domains $X^{2}$ and $Y^{2}$ respectively. We say that $Phi$ is combinatorially similar to $Psi$ if there are bijections $f colon Phi(X^2) to Psi(Y^{2})$ and $g colon Y to X$ such that $Ps
In 1945, A. W. Goodman and R. E. Goodman proved the following conjecture by P. ErdH{o}s: Given a family of (round) disks of radii $r_1$, $ldots$, $r_n$ in the plane it is always possible to cover them by a disk of radius $R = sum r_i$, provided they