ﻻ يوجد ملخص باللغة العربية
In a previous paper, we announced a formula to compute Gromov-Witten and Welschinger invariants of some toric varieties, in terms of combinatorial objects called floor diagrams. We give here detailed proofs in the tropical geometry framework, in the case when the ambient variety is a complex surface, and give some examples of computations using floor diagrams. The focusing on dimension 2 is motivated by the special combinatoric of floor diagrams compared to arbitrary dimension. We treat a general toric surface case in this dimension: the curve is given by an arbitrary lattice polygon and include computation of Welschinger invariants with pairs of conjugate points. See also cite{FM} for combinatorial treatment of floor diagrams in the projective case.
We enumerate rational curves in toric surfaces passing through points and satisfying cross-ratio constraints using tropical and combinatorial methods. Our starting point is arXiv:1509.07453, where a tropical-algebraic correspondence theorem was prove
This is a follow-up paper of arXiv:1805.00115, where rational curves in surfaces that satisfy general positioned point and cross-ratio conditions were enumerated. A suitable correspondence theorem provided in arXiv:1509.07453 allowed us to use tropic
We study generating series of Gromov-Witten invariants of $Etimesmathbb{P}^1$ and their tropical counterparts. Using tropical degeneration and floor diagram techniques, we can express the generating series as sums of Feynman integrals, where each sum
The goal of this article is to classify unramified covers of a fixed tropical base curve $Gamma$ with an action of a finite abelian group G that preserves and acts transitively on the fibers of the cover. We introduce the notion of dilated cohomology
This is a sequel to our work in tropical Hodge theory. Our aim here is to prove a tropical analogue of the Clemens-Schmid exact sequence in asymptotic Hodge theory. As an application of this result, we prove the tropical Hodge conjecture for smooth p