ﻻ يوجد ملخص باللغة العربية
Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis. To handle larger instances, tropical analogues of classical linear programming results need to be developed. This motivation leads us to study the tropical analogue of the classical linear-fractional programming problem. We construct an associated parametric mean payoff game problem, and show that the optimality of a given point, or the unboundedness of the problem, can be certified by exhibiting a strategy for one of the players having certain infinitesimal properties (involving the value of the game and its derivative) that we characterize combinatorially. We use this idea to design a Newton-like algorithm to solve tropical linear-fractional programming problems, by reduction to a sequence of auxiliary mean payoff game problems.
We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal
We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to
In the window mean-payoff objective, given an infinite path, instead of considering a long run average, we consider the minimum payoff that can be ensured at every position of the path over a finite window that slides over the entire path. Chatterjee