ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku View of the Swift/BAT Active Galactic Nuclei. III. Application of Numerical Torus Models to Two Nearly Compton Thick AGNs (NGC 612 and NGC 3081)

326   0   0.0 ( 0 )
 نشر من قبل Satoshi Eguchi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The broad band spectra of two Swift/BAT AGNs obtained from Suzaku follow-up observations are studied: NGC 612 and NGC 3081. Fitting with standard models, we find that both sources show similar spectra characterized by a heavy absorption with $N_{rm{H}} simeq 10^{24} rm{cm}^{-2}$, the fraction of scattered light is $f_{rm{scat}} = 0.5-0.8%$, and the solid angle of the reflection component is $Omega/2pi = 0.4-1.1$. To investigate the geometry of the torus, we apply numerical spectral models utilizing Monte Carlo simulations by Ikeda et al. (2009) to the Suzaku spectra. We find our data are well explained by this torus model, which has four geometrical parameters. The fit results suggest that NGC 612 has the torus half opening-angle of $simeq 60^{circ}-70^{circ}$ and is observed from a nearly edge-on angle with a small amount of scattering gas, while NGC 3081 has a very small opening angle $simeq 15^circ$ and is observed on a face-on geometry, more like the deeply buried new type AGNs found by Ueda et al. (2007). We demonstrate the potential power of direct application of such numerical simulations to the high quality broad band spectra to unveil the inner structure of AGNs.



قيم البحث

اقرأ أيضاً

We present a uniform broadband X-ray (0.5-100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope (BAT) selected Compton-thick ($log N_{mathrm{H}}/mathrm{cm}^{-2} geq 24$) Active Galactic Nuclei (CTAGNs) observed with Suzaku. The Suzaku data o f 3 objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte Carlo based model from an AGN torus by Ikeda et al. 2009. The main results are as follows. (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimates the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%) implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs (Kawamuro et al. 2016) suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard X-ray selected CTAGN is different from less obscured objects.
We report the results obtained by a systematic, broadband (0.5--150 keV) X-ray spectral analysis of moderately obscured (Compton-thin; $22 leq log N_{rm H} < 24$) active galactic nuclei (AGNs) observed with Suzaku and Swift/Burst Alert Telescope (BAT ). Our sample consists of 45 local AGNs at $z<0.1$ with $log L_{rm 14-1951mmkeV} > 42$ detected in the Swift/BAT 70-month survey, whose Suzaku archival data are available as of 2015 December. All spectra are uniformly fit with a baseline model composed of an absorbed cutoff power-law component, reflected emission accompanied by a narrow fluorescent iron-K$alpha$ line from cold matter (torus), and scattered emission. Main results based on the above analysis are as follows. (1) The photon index is correlated with Eddington ratio, but not with luminosity or black hole mass. (2) The ratio of the iron-K$alpha$ line to X-ray luminosity, a torus covering fraction indicator, shows significant anti-correlation with luminosity. (3) The averaged reflection strength derived from stacked spectra above 14 keV is larger in less luminous ($log L_{rm 10-501mmkeV} leq 43.3$; $R= 1.04^{+0.17}_{-0.19}$) or highly obscured AGNs ($log N_{rm H} > 23$; $R = 1.03^{+0.15}_{-0.17}$) than in more luminous ($log L_{rm 10-501mmkeV} > 43.3$; $R= 0.46^{+0.08}_{-0.09}$) or lightly obscured objects ($log N_{rm H} leq 23$; $R = 0.59^{+0.09}_{-0.10}$), respectively. (4) The [O IV] 25.89 $mu$m line to X-ray luminosity ratio is significantly smaller in AGNs with lower soft X-ray scattering fractions, suggesting that the [O IV] 25.89 $mu$m luminosity underestimates the intrinsic power of an AGN buried in a small opening-angle torus.
230 - Lisa Winter 2009
The fraction of Compton thick sources is one of the main uncertainties left in understanding the AGN population. The Swift Burst Alert Telescope (BAT) all-sky survey, for the first time gives us an unbiased sample of AGN for all but the most heavily absorbed sources (log NH > 25). Still, the BAT spectra (14 - 195 keV) are time-averaged over months of observations and therefore hard to compare with softer spectra from the Swift XRT or other missions. This makes it difficult to distinguish between Compton-thin and Compton-thick models. With Suzaku, we have obtained simultaneous hard (> 15 keV) and soft (0.3 - 10 keV) X-ray spectra for 5 Compton-thick candidate sources. We report on the spectra and a comparison with the BAT and earlier XMM observations. Based on both flux variability and spectral shape, we conclude that these hidden sources are not Compton-thick. We also report on a possible correlation between excess variance and Swift BAT luminosity from the 16 d binned light curves, which holds true for a sample of both absorbed (4 sources), unabsorbed (8 sources), and Compton thick (Circinus) AGN, but is weak in the 64 day binned BAT light curves.
We systematically investigate the near- (NIR) to far-infrared (FIR) photometric properties of a nearly complete sample of local active galactic nuclei (AGN) detected in the Swift/Burst Alert Telescope (BAT) all-sky ultra hard X-ray (14-195 keV) surve y. Out of 606 non-blazar AGN in the Swift/BAT 70-month catalog at high galactic latitude of $|b|>10^{circ}$, we obtain IR photometric data of 604 objects by cross-matching the AGN positions with catalogs from the WISE, AKARI, IRAS, and Herschel infrared observatories. We find a good correlation between the ultra-hard X-ray and mid-IR (MIR) luminosities over five orders of magnitude ($41 < log (L_{14-195}/{rm erg}~{rm s}^{-1})< 46$). Informed by previous measures of the intrinsic spectral energy distribution of AGN, we find FIR pure-AGN candidates whose FIR emission is thought to be AGN-dominated with low starformation activity. We demonstrate that the dust covering factor decreases with the bolometric AGN luminosity, confirming the luminosity-dependent unified scheme. We also show that the completeness of the WISE color-color cut in selecting Swift/BAT AGN increases strongly with 14-195 keV luminosity.
The gravitational properties of a torus are investigated. It is shown that a torus can be formed from test particles orbiting in the gravitational field of a central mass. In this case, a toroidal distribution is achieved because of the significant s pread of inclinations and eccentricities of the orbits. To investigate the self-gravity of the torus we consider the $N$-body problem for a torus located in the gravitational field of a central mass. It is shown that in the equilibrium state the cross-section of the torus is oval with a Gaussian density distribution. The dependence of the obscuring efficiency on torus inclination is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا