ترغب بنشر مسار تعليمي؟ اضغط هنا

The Suzaku View of the Swift/BAT AGNs (II): Time Variability and Spectra of Five Hidden AGNs

206   0   0.0 ( 0 )
 نشر من قبل Lisa Winter
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lisa Winter




اسأل ChatGPT حول البحث

The fraction of Compton thick sources is one of the main uncertainties left in understanding the AGN population. The Swift Burst Alert Telescope (BAT) all-sky survey, for the first time gives us an unbiased sample of AGN for all but the most heavily absorbed sources (log NH > 25). Still, the BAT spectra (14 - 195 keV) are time-averaged over months of observations and therefore hard to compare with softer spectra from the Swift XRT or other missions. This makes it difficult to distinguish between Compton-thin and Compton-thick models. With Suzaku, we have obtained simultaneous hard (> 15 keV) and soft (0.3 - 10 keV) X-ray spectra for 5 Compton-thick candidate sources. We report on the spectra and a comparison with the BAT and earlier XMM observations. Based on both flux variability and spectral shape, we conclude that these hidden sources are not Compton-thick. We also report on a possible correlation between excess variance and Swift BAT luminosity from the 16 d binned light curves, which holds true for a sample of both absorbed (4 sources), unabsorbed (8 sources), and Compton thick (Circinus) AGN, but is weak in the 64 day binned BAT light curves.



قيم البحث

اقرأ أيضاً

We address the very large diversity of the jet production efficiency in active galactic nuclei (AGNs) by using data on low redshift AGNs selected from the Swift/BAT catalog and having black hole (BH) masses larger than $10^{8.5},M_{odot}$. Most of th ese AGNs accrete at intermediate rates and have bolometric luminosities dominated by mid-IR radiation. Our sample contains $14%$ radio-loud (RL), $6%$ radio-intermediate (RI), and $80%$ radio-quiet (RQ) AGNs. All RL objects are found to have extended radio structures and most of them have classical FR II morphology. Converting their radio loudness to the jet production efficiency, we find that the median of this efficiency is on the order of $(epsilon_d/0.1)%$, where $epsilon_d=L_{rm bol}/dot{M}c^2$ is the radiation efficiency of the accretion disk. Without knowing the contribution of jets to the radio emission in the RQ AGNs, we are only able to estimate their efficiencies using upper limits. Their median is found to be $0.002(epsilon_d/0.1)%$. Our results suggest that some threshold conditions must be satisfied to allow production of strong, relativistic jets in RL AGNs. We discuss several possible scenarios and argue that the production of collimated, relativistic jets must involve the Blandford-Znajek mechanism and can be activated only in those AGNs whose lifetime is longer than the time required to enter the magnetically arrested disk (MAD). Presuming that MAD is required to collimate relativistic jets, we expect that the weak nonrelativistic jets observed in some RQ AGNs are produced by accretion disks rather than by rotating BHs.
The broad band spectra of two Swift/BAT AGNs obtained from Suzaku follow-up observations are studied: NGC 612 and NGC 3081. Fitting with standard models, we find that both sources show similar spectra characterized by a heavy absorption with $N_{rm{H }} simeq 10^{24} rm{cm}^{-2}$, the fraction of scattered light is $f_{rm{scat}} = 0.5-0.8%$, and the solid angle of the reflection component is $Omega/2pi = 0.4-1.1$. To investigate the geometry of the torus, we apply numerical spectral models utilizing Monte Carlo simulations by Ikeda et al. (2009) to the Suzaku spectra. We find our data are well explained by this torus model, which has four geometrical parameters. The fit results suggest that NGC 612 has the torus half opening-angle of $simeq 60^{circ}-70^{circ}$ and is observed from a nearly edge-on angle with a small amount of scattering gas, while NGC 3081 has a very small opening angle $simeq 15^circ$ and is observed on a face-on geometry, more like the deeply buried new type AGNs found by Ueda et al. (2007). We demonstrate the potential power of direct application of such numerical simulations to the high quality broad band spectra to unveil the inner structure of AGNs.
The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10^-11 erg cm^-2 s^-1 and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 < Log L(BAT) < 45.31) were selected as tar gets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption and strong Compton reflection; ii) the lack of variability; iii) the buried nature, i.e. the low scattering fraction (<0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density, X-ray luminosity and radio morphology, but shows a strong long-term variability in flux and scattering fraction, consistent with the soft emission being scattered from a distant region (e.g., the narrow emission line region). The sample presents high (>100) X-to-[OIII] luminosity ratios, confirming the [OIII] luminosity to be affected by residual extinction in presence of mild absorption, especially for buried AGN such as 3C 452. Three of our targets are powerful FRII radio galaxies, making them the most luminous and absorbed AGN of the BAT Seyfert survey despite the inversely proportional N_H - L_X relation.
We present the results of an investigation of the X-ray and UV properties of four LINERs observed with Swift, aimed at constructing good S/N and strictly simultaneous UV-X-ray SEDs. In the current paradigm, LINER emission is dominated by geometricall y thick, radiatively inefficient radiation flows (RIAFs) as opposed to radiatively efficient, geometrically thin accretion disks thought to power higher luminosity AGNs (Seyferts and QSOs). However, some recent studies have found more similarities than differences between the SEDs of LINERs and those of more luminous AGNs, suggesting that LINERs are powered by the same mechanisms active in higher luminosity AGNs. Our new observations allow us to test this idea. In particular, XRT affords long and sensitive monitoring of the X-ray emission. We detect significant variability in M81 and, for the first time, in NGC 3998. The maximum amplitude variations over time scales of some hours are 30% in both M81 and NGC 3998. NGC 3998 exhibits a variation of the same amplitude on a time scale of 9 days. M81 varies significantly over 2 years, with a maximum change of a factor 2 in 6 months. The X-ray variability detected in 2 of our sources, and in particular in NGC 3998, puts into question the interpretation of their powering mechanism as an inefficient accretion flow, because one of the characteristics of this model is the lack of variability. The identification of NGC 3998 with a low power AGN appears more viable.
We explore the relationships between the 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, usin g the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at $E lesssim 10$ keV. These X-ray spectra provide measurements of the neutral hydrogen column density ($N_{rm H}$) towards the AGNs. We use the 3.3 {mu}m PAH luminosity ($L_{rm 3.3{mu}m}$) as a proxy for star formation activity and hard X-ray luminosity ($L_{rm 14-195keV}$) as an indicator of the AGN activity. We search for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper-limits of the PAH lines into account utilizing survival analysis methods. The results of our $log(L_{rm 14-195keV})$ versus $log(L_{rm 3.3{mu}m})$ regression shows a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a $3sigma$ level. Also our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا