ﻻ يوجد ملخص باللغة العربية
A small and light polystyrene ball is released without initial speed from a certain height above the floor. Then, it falls on air. The main responsible for the friction force against the movement is the wake of successive air vortices which form behind (above) the falling ball, a turbulent phenomenon. After the wake appears, the friction force compensates the Earth gravitational attraction and the ball speed stabilises in a certain limiting value Vl. Before the formation of the turbulent wake, however, the friction force is not strong enough, allowing the initially growing speed to surpass the future final value Vl. Only after the wake finally becomes long enough, the ball speed decreases and reaches the proper Vl.
A new method of accurate calculation of the coefficient of viscosity of a test liquid from experimentally measured terminal velocity of a ball falling in the test liquid contained in a narrow tube is described. The calculation requires the value of a
The settling dynamics of falling spheres inside a Laponite suspension is studied. Laponite is a colloidal synthetic clay that shows physical aging in aqueous suspension due to the spontaneous evolution of inter-particle electrostatic interactions. In
Levy walk (LW) process has been used as a simple model for describing anomalous diffusion in which the mean squared displacement of the walker grows non-linearly with time in contrast to the diffusive motion described by simple random walks or Browni
A Monte Carlo simulation is performed on a billiard-type model system, which contains a locally nonchaotic energy barrier. Without extensive particle collision across the energy barrier, the system steady state is nonequilibrium; that is, the particl
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees