ﻻ يوجد ملخص باللغة العربية
Levy walk (LW) process has been used as a simple model for describing anomalous diffusion in which the mean squared displacement of the walker grows non-linearly with time in contrast to the diffusive motion described by simple random walks or Brownian motion. In this paper we study a simple extension of the LW model in one dimension by introducing correlation among the velocities of the walker in different (flight) steps. Such correlation is absent in the LW model. The correlations are introduced by making the velocity at a step dependent on the velocity at the previous step in addition to the usual random noise (kick) that the particle gets at random time intervals from the surrounding medium as in the LW model. Consequently the dynamics of the position becomes non-Markovian. We study the statistical properties of velocity and position of the walker at time t, both analytically and numerically. We show how different choices of the distribution of the random time intervals and the degree of correlation, controlled by a parameter r, affect the late time behaviour of these quantities.
We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z_2 symmetry. Natural realizations of such systems are giv
We study the dynamics of the center of mass of a Brownian particle levitated in a Paul trap. We focus on the overdamped regime in the context of levitodynamics, comparing theory with our numerical simulations and experimental data from a nanoparticle
L{e}vy walk is a popular and more `physical model to describe the phenomena of superdiffusion, because of its finite velocity. The movements of particles are under the influences of external potentials almost at anytime and anywhere. In this paper, w
Dissipative particle dynamics (DPD) belongs to a class of models and computational algorithms developed to address mesoscale problems in complex fluids and soft matter in general. It is based on the notion of particles that represent coarse-grained p
We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppress