ﻻ يوجد ملخص باللغة العربية
Non-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees the compatibility of the accompanying processes with the non-equilibrium entropy is proved. The non-equilibrium entropy is defined as a state function on the non-equilibrium state space containing the contact temperature as a non-equilibrium variable. If the entropy production does not depend on the internal energy, the contact temperature changes into the thermostatic temperature also in non-equilibrium, a fact which allows to use temperature as a primitive concept in non-equilibrium. The dissipation inequality is revisited, and an efficiency of generalized cyclic processes beyond the Carnot process is achieved.
The total entropy production of stochastic systems can be divided into three quantities. The first corresponds to the excess heat, whilst the second two comprise the house-keeping heat. We denote these two components the transient and generalised hou
Using the recently constructed covariant Ito-Langevin dynamics, we develop a covariant theory of non-equilibrium thermodynamics that is applicable to small systems with multiplicative noises and with slow variables forming curved manifolds. Assuming
The standard formulation of thermostatistics, being based on the Boltzmann-Gibbs distribution and logarithmic Shannon entropy, describes idealized uncorrelated systems with extensive energies and short-range interactions. In this letter, we use the f
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are
In this paper we propose a new formalism to map history-dependent metadynamics in a Markovian process. We apply this formalism to a model Langevin dynamics and determine the equilibrium distribution of a collection of simulations. We demonstrate that