ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-hertz frequency stabilization of a commercial diode laser

514   0   0.0 ( 0 )
 نشر من قبل Zehuang Lu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The absolute stability of the diode laser after locking is measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of $2.95times10^{-15}$ at 1 s, corresponding to only 0.93 Hz linewidth, even without vibration isolation of the reference cavity.



قيم البحث

اقرأ أيضاً

85 - Philippe Guay 2019
A guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip lasers li newidth was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique. This demonstration incorporates a high coherence source with the simplicity provided by the compactness of chip lasers.
We present a resonantly frequency-doubled tapered amplified semiconductor laser system emitting up to 2.6 W blue light at 400 nm. The output power is stable on both short and long timescales with 0.12% RMS relative intensity noise, and less than 0.15 %/h relative power loss over 16 hours of free running continuous operation. Furthermore, the output power can be actively stabilized, and the alignment of the input beams of the tapered amplifier chip, the frequency doubling cavity and-in case of fiber output-the fiber can be optimized automatically using computer-controlled mirrors.
134 - Ralf Kohlhaas 2011
We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a st rong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.
76 - T. Bodiya , V. Sudhir , C. Wipf 2018
Optical interferometers with suspended mirrors are the archetype of all current audio-frequency gravitational-wave detectors. The radiation pressure interaction between the motion of the mirror and the circulating optical field in such interferometer s represents a pristine form of light-matter coupling, largely due to 30 years of effort in developing high quality optical materials with low mechanical dissipation. However, in all current suspended interferometers, the radiation pressure interaction is too weak to be useful as a resource, and too strong to be neglected. Here, we demonstrate a meter-long interferometer with suspended mirrors, of effective mass $~ 125$ g, where the radiation pressure interaction is enhanced by strong optical pumping to realize a cooperativity of $50$. We probe this regime by observing optomechanically-induced transparency of a weak on-resonant probe. The low resonant frequency and high-Q of the mechanical oscillator allows us to demonstrate transparency windows barely $100$ mHz wide at room temperature. Together with a near-unity ($sim 99.9%$) out-coupling efficiency, our system saturates the theoretical delay-bandwidth product, rendering it an optical buffer capable of seconds-long storage times.
While being invented for precision measurement of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in the last years. In this paper we present a novel and simple approach for broadband spectrosco py, combining the accuracy of an optical fiber-laser-based frequency comb with the ease-of-use of a tunable external cavity diode laser. This scheme enables broadband and fast spectroscopy of microresonator modes and allows for precise measurements of their dispersion, which is an important precondition for broadband optical frequency comb generation that has recently been demonstrated in these devices. Moreover, we find excellent agreement of measured microresonator dispersion with predicted values from finite element simulations and we show that tailoring microresonator dispersion can be achieved by adjusting their geometrical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا