ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-frequency mid-infrared chip laser with a sub-hertz Lorentzian linewidth

86   0   0.0 ( 0 )
 نشر من قبل Philippe Guay
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philippe Guay




اسأل ChatGPT حول البحث

A guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip lasers linewidth was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique. This demonstration incorporates a high coherence source with the simplicity provided by the compactness of chip lasers.



قيم البحث

اقرأ أيضاً

Portable mid-infrared (mid-IR) spectroscopy and sensing applications require widely tunable, narrow linewidth, chip-scale, single-mode sources without sacrificing significant output power. However, no such lasers have been demonstrated beyond 3 $mu$m due to the challenge of building tunable, high quality-factor (Q) on-chip cavities. We demonstrate a tunable, single-mode mid-IR laser at 3.4 $mu$m using a high-Q silicon microring cavity with integrated heaters and a multi-mode Interband Cascade Laser (ICL). We show that the multiple longitudinal modes of an ICL collapse into a single frequency via self-injection locking with an output power of 0.4 mW and achieve an oxide-clad high confinement waveguide microresonator with a loaded Q of $2.8times 10^5$. Using integrated microheaters, our laser exhibits a wide tuning range of 54 nm at 3.4 $mu$m with 3 dB output power variation. We further measure an upper-bound effective linewidth of 9.1 MHz from the locked laser using a scanning Fabry-Perot interferometer. Our design of a single-mode laser based on a tunable high-Q microresonator can be expanded to quantum-cascade lasers at higher wavelengths and lead to the development of compact, portable, high-performance mid-IR sensors for spectroscopic and sensing applications.
486 - Y. N. Zhao , J. Zhang , J. Stuhler 2009
We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The absolute stability of the diode laser after locking is measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of $2.95times10^{-15}$ at 1 s, corresponding to only 0.93 Hz linewidth, even without vibration isolation of the reference cavity.
We stabilize the idler frequency of a singly-resonant optical parametric oscillator directly to the resonance of a mid-infrared Fabry-Perot reference cavity. This is accomplished by the Pound-Drever-Hall locking scheme, controlling either the pump la ser or the resonant signal frequency. A residual relative frequency noise power spectral density below 10$^3$ Hz$^2$/Hz is reached, with a Gaussian linewidth of 920 Hz over 100 ms, which demonstrates the potential for reaching spectral purity down to the Hz level by locking the optical parametric oscillator against a mid-infrared cavity with state-of-the-art superior performance.
Frequency combs have revolutionized time and frequency metrology and in recent years, new frequency comb lasers that are highly compact or even on-chip have been demonstrated in the mid-infrared and THz regions of the electromagnetic spectrum. The em erging technologies include electrically pumped quantum and interband cascade semiconductor devices, as well as high-quality factor microresonators. In this guest editorial, the authors summarize recent advances in the field, the potential for rapid broadband spectroscopy, as well as the challenges and prospects for use in molecular gas sensing.
Photonic systems and technologies traditionally relegated to table-top experiments are poised to make the leap from the laboratory to real-world applications through integration. Stimulated Brillouin scattering (SBS) lasers, through their unique line width narrowing properties, are an ideal candidate to create highly-coherent waveguide integrated sources. In particular, cascaded-order Brillouin lasers show promise for multi-line emission, low-noise microwave generation and other optical comb applications. Photonic integration of these lasers can dramatically improve their stability to environmental and mechanical disturbances, simplify their packaging, and lower cost. While single-order silicon and cascade-order chalcogenide waveguide SBS lasers have been demonstrated, these lasers produce modest emission linewidths of 10-100 kHz. We report the first demonstration of a sub-Hz (~0.7 Hz) fundamental linewidth photonic-integrated Brillouin cascaded-order laser, representing a significant advancement in the state-of-the-art in integrated waveguide SBS lasers. This laser is comprised of a bus-ring resonator fabricated using an ultra-low loss Si3N4 waveguide platform. To achieve a sub-Hz linewidth, we leverage a high-Q, large mode volume, single polarization mode resonator that produces photon generated acoustic waves without phonon guiding. This approach greatly relaxes phase matching conditions between polarization modes, and optical and acoustic modes. Using a theory for cascaded-order Brillouin laser dynamics, we determine the fundamental emission linewidth of the first Stokes order by measuring the beat-note linewidth between and the relative powers of the first and third Stokes orders. Extension to the visible and near-IR wavebands is possible due to the low optical loss from 405 nm to 2350 nm, paving the way to photonic-integrated sub-Hz lasers for visible-light applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا