ترغب بنشر مسار تعليمي؟ اضغط هنا

Active and passive stabilization of a high-power UV frequency-doubled diode laser

87   0   0.0 ( 0 )
 نشر من قبل Ulrich Eismann
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a resonantly frequency-doubled tapered amplified semiconductor laser system emitting up to 2.6 W blue light at 400 nm. The output power is stable on both short and long timescales with 0.12% RMS relative intensity noise, and less than 0.15%/h relative power loss over 16 hours of free running continuous operation. Furthermore, the output power can be actively stabilized, and the alignment of the input beams of the tapered amplifier chip, the frequency doubling cavity and-in case of fiber output-the fiber can be optimized automatically using computer-controlled mirrors.



قيم البحث

اقرأ أيضاً

136 - Guillaume Stern 2010
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to trap ^39 K.
486 - Y. N. Zhao , J. Zhang , J. Stuhler 2009
We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The absolute stability of the diode laser after locking is measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of $2.95times10^{-15}$ at 1 s, corresponding to only 0.93 Hz linewidth, even without vibration isolation of the reference cavity.
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offe rs a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.
We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplic ity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.
We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا