ﻻ يوجد ملخص باللغة العربية
We consider momentum broadening and energy loss of high momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice spacing independent. We find that the transport coefficient $hat{q}$ corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the $p_perp$-distribution of high-momentum partons. We establish the scaling of $hat{q}$ and of $dE/dx$ with density, temperature and energy in the weak-coupling regime. We also estimate the nuclear modification factor $R_{AA}$ due to elastic energy loss of a jet in a classical Yang-Mills field.
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles
We study the impact of transverse-momentum dependent parton distributions on detailed features of multi-jet final states, focusing on angular jet correlations in DIS data.
This talk discusses recent results for next-to-next-to-leading order (NNLO) QCD corrections to jet cross sections and transverse momentum distributions. The results are obtained in the NNLOJET code framework, which provides an implementation of the a
Heavy ion collisions at high energies can be used as an interesting way to recreate and study the medium of the quark-gluon plasma (QGP). We particularly investigate the jets produced in hard binary collisions and their interactions with a tentative