ﻻ يوجد ملخص باللغة العربية
We perform numerical simulations of the QCD Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot plasma which is independent of infrared cutoffs. For weakly-coupled anisotropic plasmas the local rotational symmetry in momentum space is broken. The fields develop unstable modes, forming configurations where B_t>E_t and E_z>B_z. This provides a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth.
We consider momentum broadening and energy loss of high momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles
We establish the existence of a far-from-equilibrium attractor in weakly-coupled gauge theory undergoing one-dimensional Bjorken expansion. We demonstrate that the resulting far-from-equilibrium evolution is insensitive to certain features of the ini
We utilize the technology of open quantum systems in conjunction with the recently developed effective field theory for forward scattering to address the question of massless jet propagation through a weakly-coupled quark-gluon plasma in thermal equi