ترغب بنشر مسار تعليمي؟ اضغط هنا

Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas

147   0   0.0 ( 0 )
 نشر من قبل Jacopo Ghiglieri
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 2<->2 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.



قيم البحث

اقرأ أيضاً

82 - Jacopo Ghiglieri 2016
We present an extension of the Arnold-Moore-Yaffe kinetic equations for jet energy loss to NLO in the strong coupling constant. A novel aspect of the NLO analysis is a consistent description of wider-angle bremsstrahlung (semi-collinear emissions), w hich smoothly interpolates between 2<->2 scattering and collinear bremsstrahlung. We describe how many of the ingredients of the NLO transport equations (such as the drag coefficient) can be expressed in terms of Wilson line operators and can be computed using a Euclidean formalism or sum rules, both motivated by the analytic properties of amplitudes at light-like separations. We conclude with an outlook on the computation of the shear viscosity at NLO.
118 - Konrad Tywoniuk 2017
QCD jets, produced copiously in heavy-ion collisions at LHC and also at RHIC, serve as probes of the dynamics of the quark-gluon plasma (QGP). Jet fragmentation in the medium is interesting in its own right and, in order to extract pertinent informat ion about the QGP, it has to be well understood. We present a brief overview of the physics involved and argue that jet substructure observables provide new opportunities for understanding the nature of the modifications.
We establish the existence of a far-from-equilibrium attractor in weakly-coupled gauge theory undergoing one-dimensional Bjorken expansion. We demonstrate that the resulting far-from-equilibrium evolution is insensitive to certain features of the ini tial condition, including both the initial momentum-space anisotropy and initial occupancy. We find that this insensitivity extends beyond the energy-momentum tensor to the detailed form of the one-particle distribution function. Based on our results, we assess different procedures for reconstructing the full one-particle distribution function from the energy-momentum tensor along the attractor and discuss implications for the freeze-out procedure used in the phenomenological analysis of ultra-relativistic nuclear collisions.
We compute O(g) NLO corrections to the transverse scattering kernel and transverse momentum broadening coefficient $hat{q}$ of weakly-coupled $mathcal{N}=4$ SYM. Based on this, we also compute NLO correction to the collinear splitting rates. For $hat {q}$ we find that the NLO/LO ratio is similar to the QCD one, with large NLO corrections. This is contrasted by our findings for the collinear splitting rate, which show a much better convergence in SYM than in QCD, providing further support to earlier expectations that NLO corrections have signs and relative magnitudes controlled by the specifics of the theory. We also compare the ratio of $hat{q}$ in QCD and in $mathcal{N}=4$ theory to strong coupling expectations.
We compute the shear viscosity of QCD with matter, including almost all next-to-leading order corrections -- that is, corrections suppressed by one power of $g$ relative to leading order. We argue that the still missing terms are small. The next-to-l eading order corrections are large and bring $eta/s$ down by more than a factor of 3 at physically relevant couplings. The perturbative expansion is problematic even at $T simeq 100$ GeV. The largest next-to-leading order correction to $eta/s$ arises from modifications to the qhat parameter, which determines the rate of transverse momentum diffusion. We also explore quark number diffusion, and shear viscosity in pure-glue QCD and in QED.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا