تتطلب قراءة آلات المحادثة (CMR) آلات تواصل مع البشر من خلال التفاعلات متعددة الدورات بين دولتي الحوار البارز في عمليات صنع القرار وعمليات توليد الأسئلة.في إعدادات CMR المفتوحة، كسيناريو أكثر واقعية، ستكون المعرفة الخلفية المستردة صاخبة، مما يؤدي إلى تحديات شديدة في نقل المعلومات.الدراسات الموجودة تدرب عادة أنظمة مستقلة أو خطوط الأنابيب للمشاركة.ومع ذلك، فإن هذه الطرق تافهة باستخدام قرارات تسمية ثابتة لتنشيط جيل السؤال، مما يعيق أداء النموذج في النهاية.في هذا العمل، نقترح استراتيجية فعالة للجزر من خلال تعويض دول الحوار في وحدة فك ترميز واحدة فقط وصنع قرار الجسر وتوليد الأسئلة لتوفير إشارة لولاية حوار أكثر ثراء.تظهر التجارب على DataSet أو Sharc فعالية طريقتنا، والتي تحقق نتائج جديدة من أحدث النتائج.
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
المراجع المستخدمة
https://aclanthology.org/
ستعلم وكلاء المحادثة المدربون على كوربورا كبيرة غير مبالين في التفاعلات البشرية أنماطا وسلوكيات محاكية فيها، والتي تشمل سلوكا هجوميا أو ساما.نقدم إطارا جديدا للإنسان والحلقة النموذجية لتقييم سمية هذه النماذج، ومقارنة مجموعة متنوعة من الأساليب الحالية
إن تحديد المعرفة ذات الصلة التي سيتم استخدامها في أنظمة المحادثة التي تستند إلى وثائق طويلة أمر بالغ الأهمية لتوليد الاستجابة الفعال.نقدم نموذج تعريف المعرفة الذي يرفع بنية المستند إلى توفير ترميزات مرور محكوم بحري للحوار ومعرفة تحديد المواقع ذات الص
تلقت تلخيص محادثة مبادرة إيلاء اهتمام متزايد في حين تعتمد معظم نماذج تلخيص حديثة حديثة من بين الفنون بشدة على ملخصات المشروح بين الإنسان. للحد من الاعتماد على الملخصات المسمى، في هذا العمل، نقدم مجموعة بسيطة ولكنها فعالة من طرق تكبير بيانات المحادثة
ويعتقد أن وضع العلامات الدلالية الدلالية للمحادثة (CSRL) هي خطوة حاسمة نحو فهم الحوار.ومع ذلك، لا يزال يمثل تحديا كبيرا لمحلل CSRL الحالي للتعامل مع المعلومات الهيكلية للمحادثة.في هذه الورقة، نقدم بنية بسيطة وفعالة ل CSRL التي تهدف إلى معالجة هذه الم
آلة القراءة، هي إطار القراءة، إطار تحليل يأخذ نصا مؤيدا للنص الخام وإجراء ستة مهام NLP القياسية: Tokenization، وضع العلامات على نقاط البيع، التحليل المورفولوجي، الليمات، تحليل التبعية وتجزئة الجملة.تم تصميمه عند التحليل القائم على الانتقال، ويسمح بتن