ترغب بنشر مسار تعليمي؟ اضغط هنا

حوار بوت الخصوم لعوامل المحادثة الآمنة

Bot-Adversarial Dialogue for Safe Conversational Agents

216   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ستعلم وكلاء المحادثة المدربون على كوربورا كبيرة غير مبالين في التفاعلات البشرية أنماطا وسلوكيات محاكية فيها، والتي تشمل سلوكا هجوميا أو ساما.نقدم إطارا جديدا للإنسان والحلقة النموذجية لتقييم سمية هذه النماذج، ومقارنة مجموعة متنوعة من الأساليب الحالية في كل من حالات المستخدمين غير المصندين والموديين الذين يعرضون نقاط ضعفهم.ثم نذهب لاقتراح طريقتين روايتين لعوامل المحادثة الآمنة، إما عن طريق التدريب على البيانات من إطار عملنا الجديد للنسب في الحلقة في نظام من مرحلتين، أو "سلامة" في "الخبز"إلى نموذج الولادة نفسه.نجد تقنياتنا الجديدة هي (ط) أكثر أمانا من النماذج الحالية؛في حين أنه (2) الحفاظ على مقاييس قابلية الاستقرار مثل التجذير بالنسبة لشركة Chatbots الحديثة.على النقيض من ذلك، فإننا نعرض مشكلات سلامة خطيرة في الأنظمة القياسية الحالية مثل GPT2، حوالة، و BlenderBot.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتطلب قراءة آلات المحادثة (CMR) آلات تواصل مع البشر من خلال التفاعلات متعددة الدورات بين دولتي الحوار البارز في عمليات صنع القرار وعمليات توليد الأسئلة.في إعدادات CMR المفتوحة، كسيناريو أكثر واقعية، ستكون المعرفة الخلفية المستردة صاخبة، مما يؤدي إلى تحديات شديدة في نقل المعلومات.الدراسات الموجودة تدرب عادة أنظمة مستقلة أو خطوط الأنابيب للمشاركة.ومع ذلك، فإن هذه الطرق تافهة باستخدام قرارات تسمية ثابتة لتنشيط جيل السؤال، مما يعيق أداء النموذج في النهاية.في هذا العمل، نقترح استراتيجية فعالة للجزر من خلال تعويض دول الحوار في وحدة فك ترميز واحدة فقط وصنع قرار الجسر وتوليد الأسئلة لتوفير إشارة لولاية حوار أكثر ثراء.تظهر التجارب على DataSet أو Sharc فعالية طريقتنا، والتي تحقق نتائج جديدة من أحدث النتائج.
إن تحديد المعرفة ذات الصلة التي سيتم استخدامها في أنظمة المحادثة التي تستند إلى وثائق طويلة أمر بالغ الأهمية لتوليد الاستجابة الفعال.نقدم نموذج تعريف المعرفة الذي يرفع بنية المستند إلى توفير ترميزات مرور محكوم بحري للحوار ومعرفة تحديد المواقع ذات الص لة بالمحادثة.خسارة مساعدة تلتقط تاريخ اتصالات الوثيقة الحوار.نوضح فعالية نموذجنا على مجموعة بيانات المحادثة المدرجة في المستندات وتوفير التحليلات التي تظهر التعميم على المستندات غير المرئية وسياقات الحوار الطويلة.
تلقت تلخيص محادثة مبادرة إيلاء اهتمام متزايد في حين تعتمد معظم نماذج تلخيص حديثة حديثة من بين الفنون بشدة على ملخصات المشروح بين الإنسان. للحد من الاعتماد على الملخصات المسمى، في هذا العمل، نقدم مجموعة بسيطة ولكنها فعالة من طرق تكبير بيانات المحادثة (CODA) لعلمة محادثة إفراطية شبه إشراف، مثل تبادل / حذف عشوائي لإضطرب علاقات الخطاب داخل المحادثات، والحوار - الإدراج الموجه المرشد بمقاطعة تطوير المحادثات، والاستبدال القائم على الجيل الشرطي لاستبدال الكلام مع صياغةهم الناتجة بناء على سياق المحادثة. لمزيد من الاستفادة من المحادثات غير المستمرة، نجمع بين Coda مع التدريب الذاتي الصاخب على مرحلتين حيث نقوم أولا بتدريب نموذج التلخيص مسبقا على المحادثات غير المسبقة مع ملخصات زائفة، ثم ضبطها على المحادثات المسمى. توضح التجارب التي أجريت في مجموعات بيانات تلخيص المحادثة الأخيرة فعالية أساليبنا على العديد من خطوط خطوط تكبير البيانات في البيانات.
رضا المستخدمين على مستوى الدوران هو أحد أهم مقاييس الأداء لعوامل المحادثة. يمكن استخدامه لمراقبة أداء الوكيل وتوفير رؤى حول تجارب المستخدم المعيبة. في حين أن التعلم العميق المنتهي في النهاية قد أظهر نتائج واعدة، فإن الوصول إلى عدد كبير من العينات الم شروح الموثوقة التي تتطلبها هذه الطرق تظل تحديا. في نظام محادثة واسعة النطاق، يوجد عدد متزايد من المهارات المتقدمة حديثا، مما يجعل عملية جمع البيانات التقليدية والشروحية وعملية النمذجة غير عملي بسبب تكاليف التوضيحية المطلوبة وأوقات التحول. في هذه الورقة، نقترح اقتراح نهج تعليمي بسيط للإشراف على أن يهدف إلى مجموعة من البيانات غير المسبقة لتعلم تفاعلات وكيل المستخدم. نظهر أن النماذج المدربة مسبقا باستخدام الهدف الأكثر إشرا للإشراف قابلة للتحويل إلى تنبؤ رضا المستخدمين. بالإضافة إلى ذلك، نقترح نقه نهج لتعلم تحويل القليل من الرواية يضمن نقل أفضل لأحجام عينة صغيرة جدا. لا تتطلب الطريقة القليلة المقترحة أي عملية تحسين الحلقة الداخلية وهي قابلة للتحجيم إلى مجموعات البيانات الكبيرة جدا والنماذج المعقدة. بناء على تجاربنا باستخدام بيانات حقيقية من نظام تجاري واسع النطاق، فإن النهج المقترح قادر على تقليل العدد المطلوب بشكل كبير، مع تحسين التعميم بشأن المهارات غير المرئية.
سيحتاج الوكلاء الذكيون الذين يشترفون بمفاهيم جديدة في البيئات المحددة إلى طلب أسئلة زملائهم البشريين الذين يتعلمون عن العالم المادي.لفهم هذه المشكلة بشكل أفضل، نحتاج إلى بيانات حول طرح الأسئلة في التفاعلات القائمة على المهمة المحددة.تحقيقا لهذه الغاي ة، نقدم كوربوس لتعلم الحوار البشري الروبوت (HURDL) - وهو جوربوس حوار رواية تم جمعها في بيئة افتراضية تفاعلية عبر الإنترنت التي يلعب فيها المشاركين البشري دور الروبوت الذي يؤدي مهمة تنظيم أدوات تعاونية.نحن نصف بيانات Corpus ومخطط التوضيح المقابل لتقديم نظرة ثاقبة في شكل ومضمون الأسئلة التي يطلبها البشر تسهيل التعلم في بيئة داخلية.نحن نقدم كوربوس كمورد مضمون تجريبيا لتحسين توليد السؤال في الوكلاء الذكيين المحتملين.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا