ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة صياغة نية للحوار الموجه نحو المهام المحرز إلى نهاية المجال

Intention Reasoning Network for Multi-Domain End-to-end Task-Oriented Dialogue

297   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

شهدت السنوات الأخيرة نجاحا رائعا في نظام الحوار الموجه نحو المهام في نهاية إلى نهج، خاصة عند دمج معلومات المعرفة الخارجية. ومع ذلك، لا تزال جودة الاستجابة المتولدة في معظم النماذج القائمة محدودة، ويرجع ذلك أساسا إلى عدم وجود التفكير الدقيق في المعرفة الحتمية (WRT الرموز المفاهيمية)، مما يجعل من الصعب التقاط التحولات المفهوم وتحديد نية المستخدم الحقيقية في الصليب -task سيناريوهات. لمعالجة هذه المشكلات، نقترح آلية نية جديدة لتحسين معرفة الكيان الحتمي بشكل أفضل. استنادا إلى مثل هذه الآلية، فإننا نقترح أيضا شبكة منطق النية (IR-NET)، والتي تتألف من التفكير المشترك والمتعدد، للحصول على تمثيلات نية من الرموز المفاهيمية التي يمكن استخدامها لالتقاط التحولات المفهوم المتضمنة في المهمة المحادثات المتداولة، بحيث لتحديد نية المستخدم بفعالية وتوليد ردود أكثر دقة. تحقق النتائج التجريبية من فعالية IR-NET، والتي توضح أنها تحقق الأداء الحديثة في مجموعات حوار ملثى متعدد المجالات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

إن دمج قواعد المعرفة (KB) في أنظمة الحوار الموجهة نحو المهام الواحد أمرا صعبا، لأنها تتطلب تمثيل كيان KB بشكل صحيح، وهو مرتبط بسياق KB وحالات الحوار. تمثل الأعمال الحالية الكيان مع إدراك جزء من سياق KB فقط، والذي يمكن أن يؤدي إلى تمثيل أقل فعالية بسب ب فقدان المعلومات، ويلفح سلبا من أجل تناسبي KB وتوليد الاستجابة. لمعالجة هذه المشكلة، نستكشف من السياق بالكامل عن تمثيل الكيان من خلال إدراك جميع الكيانات والحوار ذات الصلة ديناميكيا. لتحقيق ذلك، نقترح، نقترح إطار محول محول في الذاكرة المعززة بالذاكرة (المذنب)، والتي تعامل KB كسلسلة وتزايد قناع ذاكرة جديدة لفرض الكيان على التركيز فقط على كياناتها ذات الصلة وحوار التاريخ، مع تجنب الهاء من الكيانات غير ذات الصلة. من خلال تجارب واسعة، نوضح أن إطار المنزول لدينا يمكن أن يحقق أداء فائقا على حالة الآداب.
نقترح مشكلة جديدة في مجال التعلم المنتهي في نهاية الحوار الموجهة نحو الوظيفة (TOD)، حيث يحاكي نظام مربع الحوار وكيل استكشاف الأخطاء وإصلاحها يساعد المستخدم من خلال تشخيص مشكلتهم (على سبيل المثال، السيارة لا تبدأ).ترتكز حوارات هذه الحوار في مخططات الم خططات الموسيقية الخاصة بالمجال، والتي من المفترض أن يتبع الوكيل أثناء المحادثة.تعرض مهمتنا تحديات تقنية جديدة من أجل TOD العصبي، مثل التأريض على الكلام إلى مخطط الانسيابي دون عبوات صريحة، في إشارة إلى الصفحات اليدوية الإضافية عندما يطلب المستخدم سؤالا توضيحا، والقدرة على اتباع مخططات انسيابية غير مرئية في وقت الاختبار.نقوم بإصدار مجموعة بيانات (Flodial) تتكون من 2،738 مربعا على 12 نقطة مخاطرة مختلفة لاستكشاف الأخطاء وإصلاحها.نقوم أيضا بتصميم نموذج عصبي، FLONET، والذي يستخدم بنية توليد تعزز استرجاع لتدريب وكيل الحوار.تجد تجاربنا أن الألهام يمكن أن تفعل نقل طلقة صفرية إلى مخططات انسيابية غير مرئية، ويضع خط أساس قوي للبحث في المستقبل.
من المعروف أن فك التشفير المباشر التجريدي للحوار الموجه في المهام يعاني من التأثير الشرح بعيدا، حيث يتجلى في النماذج التي تفضل الردود القصيرة والأعمالية.نحن هنا نقول لاستخدام نظرية بايز لتصدي مهمة الحوار إلى طرازتين، وتوزيع السياق بالنظر إلى الاستجاب ة، وقبل الاستجابة نفسها.هذا النهج، وهو مثيل لنموذج القناة الصاخبة، كلاهما يخفف من تفسير التأثير ويسمح بتدمير النماذج الكبيرة المحددة مسبقا للاستجابة السابقة.نقدم تجارب مكثفة تظهر أن نموذج قناة صاخبة يرمز أفضل ردود أفضل مقارنة بالفهرات المباشرة وأن استراتيجية الاحتجاط بمقدار مرحلتين، تستخدم بيانات الحوار المفتوحة الموجهة نحو المهام، وتحسين النماذج ذات التهيئة بشكل عشوائي.
أثارت نماذج اللغة المدربة مسبقا مقرها الانتباه مثل GPT-2 تقدما كبيرا لنمذجة حوار نهاية إلى نهاية.ومع ذلك، فإنهم يقدمون أيضا مخاطر كبيرة للحوار الموجهة إلى المهام، مثل عدم وجود أسس المعرفة أو التنوع.لمعالجة هذه القضايا، نقدم أهداف تدريبية معدلة لنموذج اللغة Finetuning، ونحن نوظف تكبير بيانات ضخمة عبر الترجمة الخلفي لزيادة تنوع بيانات التدريب.ندرس إمكانيات الجمع بين البيانات من مصادر مضاعفات تحسين الأداء على مجموعة البيانات المستهدفة.نحن نقيم بعناية مساهماتنا مع كل من الأساليب البشرية والآلية.يتفوق نموذجنا بشكل كبير على خط الأساس على بيانات MultiWoz ويظهر أداء تنافسي مع حالة الفن في كل من التقييم التلقائي والإنساني.
توضح هذه الورقة تقديم نظام الترجمة من Niutrans End-tou-end الكلام للمهمة غير المتصلة IWSLT 2021، والتي تترجم من الصوت الإنجليزي إلى النص الألماني مباشرة دون نسخ متوسط.نحن نستخدم الهندسة المعمارية النموذجية القائمة على المحولات وتعزيزها عن طريق مطابقة ، ترميز الموضع النسبي، والترميز الصوتية والترميز النصي مكدسة.لزيادة بيانات التدريب، يتم ترجم نسخ اللغة الإنجليزية إلى الترجمات الألمانية.أخيرا، نحن نوظف فك تشفير الفرقة لدمج التنبؤات من عدة نماذج مدربة مع مجموعات البيانات المختلفة.الجمع بين هذه التقنيات، نحقق 33.84 نقطة بلو على مجموعة اختبار EN-DE MUST-C، والتي تظهر الإمكانات الهائلة لنموذج نهاية إلى نهاية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا