أثارت نماذج اللغة المدربة مسبقا مقرها الانتباه مثل GPT-2 تقدما كبيرا لنمذجة حوار نهاية إلى نهاية.ومع ذلك، فإنهم يقدمون أيضا مخاطر كبيرة للحوار الموجهة إلى المهام، مثل عدم وجود أسس المعرفة أو التنوع.لمعالجة هذه القضايا، نقدم أهداف تدريبية معدلة لنموذج اللغة Finetuning، ونحن نوظف تكبير بيانات ضخمة عبر الترجمة الخلفي لزيادة تنوع بيانات التدريب.ندرس إمكانيات الجمع بين البيانات من مصادر مضاعفات تحسين الأداء على مجموعة البيانات المستهدفة.نحن نقيم بعناية مساهماتنا مع كل من الأساليب البشرية والآلية.يتفوق نموذجنا بشكل كبير على خط الأساس على بيانات MultiWoz ويظهر أداء تنافسي مع حالة الفن في كل من التقييم التلقائي والإنساني.
Attention-based pre-trained language models such as GPT-2 brought considerable progress to end-to-end dialogue modelling. However, they also present considerable risks for task-oriented dialogue, such as lack of knowledge grounding or diversity. To address these issues, we introduce modified training objectives for language model finetuning, and we employ massive data augmentation via back-translation to increase the diversity of the training data. We further examine the possibilities of combining data from multiples sources to improve performance on the target dataset. We carefully evaluate our contributions with both human and automatic methods. Our model substantially outperforms the baseline on the MultiWOZ data and shows competitive performance with state of the art in both automatic and human evaluation.
المراجع المستخدمة
https://aclanthology.org/
الأساليب نهاية إلى نهاية لمهام التسلسل أصبحت شعبية بشكل متزايد. ومع ذلك بالنسبة لمهام التسلسل المعقدة، مثل ترجمة الكلام، فإن الأنظمة التي تتالي أن العديد من النماذج المدربة على المهام الفرعية قد أظهرت متفوقة، مما يشير إلى أن تكوين النظم المتتالية يبس
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية
تحدث نماذج اللغات القائمة على المحولات الحديثة ثورة في NLP. ومع ذلك، كانت الدراسات الحالية في النمذجة اللغوية مع بيرت تقتصر في الغالب على المواد باللغة الإنجليزية ولا تدفع اهتماما كافيا لمعرفة اللغة الضمنية باللغة، مثل الأدوار الدلالية والتفترض واللب
شهدت السنوات الأخيرة نجاحا رائعا في نظام الحوار الموجه نحو المهام في نهاية إلى نهج، خاصة عند دمج معلومات المعرفة الخارجية. ومع ذلك، لا تزال جودة الاستجابة المتولدة في معظم النماذج القائمة محدودة، ويرجع ذلك أساسا إلى عدم وجود التفكير الدقيق في المعرفة
يمكن أن أنظمة البحث عن المحادثة الناجحة تجربة تسوق طبيعية وتكيفية وتفاعلية لعملاء التسوق عبر الإنترنت. ومع ذلك، فإن بناء هذه الأنظمة من الصفر تواجه تحديات الكلمة الحقيقية من كل من مخطط المنتج / المعرفة غير الصحيحة ونقص بيانات حوار التدريب. في هذا الع