في هذه الورقة، ندرس التحيز العرقي وكيف يختلف عبر اللغات عن طريق تحليل التحيز الإثني والتخفيف من التحيز الإثني في بيرت أحادي اللغة الإنجليزية والألمانية والإسبانية والكورية والتركية والصينية.لاحظ وتحديد التحيز العرقي، ونحن نطور مترا مربعا يسمى درجة التحيز الفئرانية.ثم نقترح طريقتين للتخفيف؛أولا باستخدام نموذج متعدد اللغات، والثاني باستخدام محاذاة الكلمات السياقية من نماذج أحادية.قارن أساليبنا المقترحة مع بيرت أحادي الأجل وإظهار أن هذه الأساليب تخفف بشكل فعال التحيز العرقي.أي من الطريقتين يعملان بشكل أفضل يعتمد على مقدار موارد NLP المتاحة لهذه اللغة.نحن بالإضافة إلى تجربة اللغة العربية واليونانية للتحقق من أن أساليبنا المقترحة تعمل من أجل مجموعة متنوعة واسعة من اللغات.
In this paper, we study ethnic bias and how it varies across languages by analyzing and mitigating ethnic bias in monolingual BERT for English, German, Spanish, Korean, Turkish, and Chinese. To observe and quantify ethnic bias, we develop a novel metric called Categorical Bias score. Then we propose two methods for mitigation; first using a multilingual model, and second using contextual word alignment of two monolingual models. We compare our proposed methods with monolingual BERT and show that these methods effectively alleviate the ethnic bias. Which of the two methods works better depends on the amount of NLP resources available for that language. We additionally experiment with Arabic and Greek to verify that our proposed methods work for a wider variety of languages.
المراجع المستخدمة
https://aclanthology.org/
أخبار وهمية تسبب أضرارا كبيرة في المجتمع.للتعامل مع هذه الأخبار المزيفة، تم إجراء العديد من الدراسات حول نماذج كشف البناء وترتيب مجموعات البيانات.معظم مجموعات بيانات الأخبار المزيفة تعتمد على فترة زمنية محددة.وبالتالي، فإن نماذج الكشف المدربة على مثل
في الوقت الحاضر، تستخدم منصات وسائل التواصل الاجتماعي نماذج التصنيف للتعامل مع خطاب الكراهية واللغة المسيئة.مشكلة هذه النماذج هي ضعفها للحيز.شكل منتشر من التحيز في خطاب الكراهية ومجموعات البيانات اللغوية المسيئة هو التحيز الهندي الناجم عن التصور النف
يعيد هذا العمل مهمة اكتشاف الكلمات المتعلقة بالقرار في حوار متعدد الأحزاب.نستكشف أداء نهج تقليدي ونهج عميق قائم على التعلم بناء على نماذج لغة المحولات، مع تقدم الأخير تحسينات متواضعة.ثم نحلل تحريف الموضوع في النماذج باستخدام معلومات الموضوع التي تم ا
تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب
وقد تبين أن نماذج اللغة ذات الضبط بذاتها أن تظهر تحيزات ضد المجموعات المحمية في مجموعة من مهام النمذجة مثل تصنيف النص ودقة Aqueference. تركز الأشغال السابقة على اكتشاف هذه التحيزات، وتقليل التحيز في تمثيلات البيانات، واستخدام أهداف التدريب الإضافية ل