ترغب بنشر مسار تعليمي؟ اضغط هنا

فحص الحقائق القائمة على الأدلة للمطالبات المتعلقة بالصحة

Evidence-based Fact-Checking of Health-related Claims

313   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تلقت مهمة التحقق من صحة المطالبات في الوثائق النصية، أو فحص الحقائق، اهتماما كبيرا في السنوات الأخيرة. تحتوي العديد من مجموعات بيانات الحقائق القائمة على الأدلة الموجودة على المطالبات الاصطناعية والنماذج المدربة على هذه البيانات قد لا تتمكن من التحقق من مطالبات العالم الحقيقي. وعليا بعض الدراسات التي تعالجت التحقق من الحقائق القائمة على الأدلة للمطالبات المتعلقة بالصحة التي تتطلب الخبرات الطبية أو الأدلة من الأدبيات العلمية. في هذه الورقة، نقدم صحة، مجموعة بيانات جديدة لفحص الحقائق القائم على الأدلة للمطالبات المتعلقة بالصحة التي تسمح بدراسة صلاحية المطالبات في العالم الحقيقي من خلال تقييم صدقها ضد المقالات العلمية. باستخدام طريقة إنشاء بيانات ثلاث خطوات، استجبت لأول مرة مطالبات عالمية حقيقية من المقتطفات التي تم إرجاعها بواسطة محرك بحث للأسئلة حول CovID-19. ثم استرجاعنا تلقائيا وإعادة صياغة الأوراق العلمية ذات الصلة باستخدام نموذج T5 القائم على الصلة. وأخيرا، تم تفاح العلاقات بين كل بيان أدلة والمطالبة المرتبطة يدويا كدعم ودحض ومحايد. للتحقق من صحة مجموعة البيانات التي تم إنشاؤها من 14،330 أزواج مطالبة الأدلة، طورت نماذج خط الأساس بناء على نماذج اللغة المحددة مسبقا. أظهرت تجاربنا أن التدريبات التدريبية العميقة في المطالبات الطبية في العالم الحقيقي تعمل بشكل كبير على تحسين الأداء مقارنة بالنماذج المدربة على مطالبات الاصطناعية والمفتوحة. تشير النتائج الخاصة بنا والتحليلات اليدوية إلى أن صحية يوفر مجموعة بيانات واقعية وصعبة للجهود المستقبلية بشأن التحقق من الحقائق القائمة على الأدلة للمطالبات المتعلقة بالصحة. تتوفر DataSet، التعليمات البرمجية المصدر، لوحة المتصدرين في https://github.com/sarrouti/healthver.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

التحقق من الحقائق الآلية على نطاق واسع هو مهمة صعبة لم تتم دراستها بشكل منهجي حتى وقت قريب.مجموعات وثيقة صاخبة كبيرة مثل الويب أو المقالات الإخبارية تجعل المهمة أكثر صعوبة.نحن تصف نظام فحص الحقائق الآلي من ثلاث مراحل، اسمه Quin +، باستخدام أساليب است رجاع الأدلة والاختيار.نحن نوضح أن استخدام تمثيلات مرور كثيفة يؤدي إلى أدلة أعلى بكثير استدعاء في بيئة صاخبة.نقترح أيضا أساليب اختيار الجملة، وهي اختيار مقرها التضمين باستخدام نموذج استرجاع كثيف، ونهج وضع العلامات المتسلسل لتحديد السياق.QUIN + قادر على التحقق من مطالبات المجال المفتوح باستخدام النتائج من محركات البحث على الويب.
استخراج الحقائق والتحقق (الحمى) هي مهمة تم تقديمها مؤخرا تتألف من استرجاع المستندات الفرعية التالية (I)، (II) استعادة الجملة، و (3) التحقق من المطالبة.في هذا العمل، نركز على الترجمة الفرعية لاسترجاع الجملة.على وجه التحديد، نقترح نموذجا يعتمد على المح ولات على الأدلة التي تتفوق على جميع الطرز الأخرى من حيث درجة الحمى باستخدام مجموعة فرعية من مثيلات التدريب.بالإضافة إلى ذلك، نقوم بإجراء دراسة تجريبية كبيرة للحصول على فهم أفضل للمشكلة، بينما تلخص نتائجنا من خلال تقديم تحديات البحث في المستقبل.
كجزء من المهمة المشتركة الحميرة، قمنا بتطوير بنية قوية ومضبوطة بدقة للتعامل مع الاسترجاع المشترك وتتبعها على البيانات النصية وكذلك البيانات الهيكلية مثل الجداول.اقترحنا خططين تدريبي لمعالجة العقبات المتأصلة لمجموعات البيانات متعددة الوسائط متعددة الق فزات.أول واحد يسمح بإجراء استرجاع قوي لمجموعات الأدلة الكاملة، في حين أن المرء الثاني يتيح الاستيطاط الاستفادة الكاملة من مدخلات الأدلة الصاخبة.بالإضافة إلى ذلك، كشف عملنا عن رؤى مهمة وسيلة بحثية محتملة للتحسين في المستقبل على هذا النوع من مجموعة البيانات.في التقييم الأولي حول مجموعة اختبار المهام المشتركة الحميرة، يحقق نظامنا 0.271 درجة حمامة، مع استدعاء الأدلة 0.4258 ودقة استقامة 0.5607.
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط قية غنية لتعزيز عملية التحقق. ومع ذلك، نظرا لعدم وجود إشارات خاضعة للإشراف بالكامل في عملية توليد البرنامج، يمكن استخلاص البرامج الزائفة وعملها، مما يؤدي إلى عدم قدرة النموذج على العمليات المنطقية المفيدة. لمعالجة المشكلات المذكورة أعلاه، في هذا العمل، نقوم بصياغة مهمة التحقق من الحقائق القائمة على الطاولة كإطار لاسترجاع الأدلة والتفكير، حيث اقترح شبكة التحقق من الأدلة على مستوى المنطق وشبكة التحقق القائمة على الرسم البياني (LERGV). على وجه التحديد، نقوم أولا باسترجئة الأدلة التي تشبه البرامج على مستوى المنطق من الجدول المعطى والبيان كدليل تكميلي على الطاولة. بعد ذلك، نقوم بإنشاء رسم بياني لمستوى منطقي لالتقاط العلاقات المنطقية بين الكيانات والوظائف في الأدلة المستردة، وتصميم شبكة التحقق القائمة على الرسم البياني لإجراء المنطق المستندة إلى الرسم البياني على مستوى المنطق بناء على الرسم البياني الذي تم إنشاؤه لتصنيف النهائي علاقة استقامة. النتائج التجريبية على Tabract Tabract القياسي على نطاق واسع تظهر فعالية النهج المقترح.
في هذه الورقة، نقترح نظام التحقق والتحقق من حقائق جديدة للتحقق من مطالبات محتوى ويكيبيديا.يسترد نظامنا صفحات ويكيبيديا ذات الصلة باستخدام Anserini، ويستخدم نموذج الإجابة على السؤال من Bert-Bert-bert-Berted لتحديد الأدلة الصحيحة، وتحقق من المطالبات با ستخدام نموذج الاستدلال باللغة الطبيعية XLNet بمقارنتها بالأدلة.يتم الحصول على أدلة خلية الجدول من خلال البحث عن قيم الخلايا المطابقة للكيان وسؤال الجدول Tapas نموذج الرد على نموذج.يستخدم خط الأنابيب إمكانيات الطلقة الصفرية للنماذج الحالية وجميع النماذج المستخدمة في خط الأنابيب لا يتطلب أي تدريب إضافي.حصل نظامنا على درجة حمامة من 0.06 ودقة ملصقة تبلغ 0.39 في التحدي الحمير.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا