ترغب بنشر مسار تعليمي؟ اضغط هنا

Shapelurn: لعبة تعلم اللغة التفاعلية مع الاستدلال المنطقي

SHAPELURN: An Interactive Language Learning Game with Logical Inference

553   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نحقق في ما إذا كان هناك نموذج يمكن أن يتعلم اللغة الطبيعية مع الحد الأدنى من المدخلات اللغوية من خلال التفاعل.معالجة هذا السؤال، نقوم بتصميم وتنفيذ لعبة تعليمية تفاعلية تتعلم التمثيلات الدلالية المنطقية تكوين.تتيح لنا لعبتنا استكشاف فوائد الاستدلال المنطقي لتعلم اللغة الطبيعية.يوضح التقييم أن النموذج يمكن أن يضيق بدقة التمثيلات المنطقية المحتملة للكلمات على مدار اللعبة، مما يشير إلى أن نموذجنا قادر على تعلم تعيينات معجمية من الصفر بنجاح.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يحقق نماذج اللغة التعلم المستندة عميقا (DL) أداء عال في مختلف المعايير لاستدلال اللغة الطبيعية (NLI).وفي هذا الوقت، يتلقى النهج الرمزية ل NLI اهتماما أقل.كلا النهجين (الرمزي و DL) لديهم مزاياهم وموضعاتهم.ومع ذلك، حاليا، لا توجد طريقة تجمع بينها في نظ ام لحل مهمة NLI.لدمج أساليب التعلم الرمزي والعميقة، نقترح إطار استنتاجي يسمى NeuRallog، والذي يستخدم محرك الاستدلال المنطقي على حد سواء ونموذج لغة الشبكة العصبية لمحاذاة العبارة.نماذج إطار عملنا مهمة NLI كصورة بحث كلاسيكية وتستخدم خوارزمية البحث في شعاع البحث عن مسارات الاستدلال الأمثل.تظهر التجارب أن نظامنا المشترك ومنطق الاستدلال العصبي يحسن الدقة في مهمة NLI ويمكن أن تحقق دقة حديثة على مجموعات البيانات المريضة والمتوسطة.
توفر الدلالات الرسمية في تقليد مونتاجوفي صياغة معنى دقيقا، ولكن عادة دون نظرية رسمية من البراغماتية لمعايير السياق وحساستها لمعرفة الخلفية. وفي الوقت نفسه، تجعل النظريات الرسمية البراغماتية تنبؤات صريحة حول المعنى في السياق، ولكنها عموما دون دلالات ت ركيبية محددة جيدا. نقترح إطارا مشتركا للتفسير الدلالي والعملي للجمل في مواجهة المعرفة الاحتمالية. نحن نقوم بذلك (1) تمديد مخطط تفسير Montagovian لتوليد التوزيع عبر المعاني المحتملة، و (2) إنشاء خلفي لهذا التوزيع باستخدام متغير نماذج قانون الكلام الرشيد (RSA)، ولكن معمم على المقترحات التعسفية. يتم ربط هذه الجوانب من إطارنا معا من خلال تقييم الاستقصاء بموجب عدم اليقين الاحتمالي. نطبق نموذجنا على قرار أنشفورا وإظهار أنه يوفر تحيزات متوقعة بموجب افتراضات مناسبة حول توزيعات المعرفة المعجمية والعالمية. علاوة على ذلك، نلاحظ أن إخراج النموذج قوي للتغيرات في معاييرها داخل نطاقات معقولة.
تقدم هذه الورقة مجموعة بيانات جديدة للفيديو واللغة مع إجراءات بشرية للاستدلال المنطقي متعدد الوسائط، والتي تركز على التعبيرات المتعمدة وجوقية تصف الإجراءات البشرية الديناميكية.تتكون DataSet من 200 فيديو، 5554 ملصقات عمل، و 1،942 ثلاثة توائم عمل من ال نموذج (الموضوع، المسند، كائن) يمكن ترجمته بسهولة إلى تمثيلات دلالية منطقية.من المتوقع أن تكون DataSet مفيدة لتقييم أنظمة الاستدلال متعددة الوسائط بين مقاطع الفيديو والجمل المعقدة الدلوية بما في ذلك النفي والكمية.
نقدم وكيل مخطط تفاعلي، وهو نظام تمكن المستخدمين من التلاعب مباشرة بالألوان باستخدام تعليمات اللغة الطبيعية داخل بيئة برمجة تفاعلية.خرائط عامل التآمر اللغة لتغطية التحديثات.نحن صياغة هذه المشكلة كملكة حوار حوار موجهة نحو المهام القائمة على فتحة، والتي نتصبها بنموذج تسلسل إلى تسلسل.لا يزال هذا النموذج المتاخطط أثناء وجود أخطاء في معظم الحالات، مما يجعل الأخطاء، لذلك، يتيح النظام وضع ردود الفعل، حيث يتم تقديم المستخدم بقائمة من المؤامرات الأعلى، والتي يمكن للمستخدم اختيار المرغوبة.من هذا النوع من ردود الفعل، يمكننا بعد ذلك، من حيث المبدأ، يتعلم باستمرار وتحسين النظام.بالنظر إلى أن التآمر يستخدم على نطاق واسع عبر الحقول التي يحركها البيانات، فإننا نعتقد أن مظاهرةنا ستكون مصلحة لكل من الممارسين مثل علماء البيانات المحددين على نطاق واسع، والباحثين المهتمين بواجهات اللغة الطبيعية.
أظهرت الأساليب الحديثة بناء على نماذج اللغة المدربين مسبقا أداء مشغل قوي على المنطق المنطقي.ومع ذلك، فإنها تعتمد على شروح بيانات باهظة الثمن والتدريب المستهلكة للوقت.وهكذا، نحن نركز على التفكير المنطقي غير المنشأ.نظهر فعالية استخدام إطار عمل مشترك، ا ستنتاج اللغة الطبيعية (NLI)، لحل مهام المنطق المنطقي متنوعة.من خلال الاستفادة من نقل التحويلات من مجموعات بيانات NLI الكبيرة، وحقن المعرفة الحاسمة من مصادر المنطقية مثل 2020 والفهول الذرية، حققت طريقنا أداء غير مدهز للحالة غير المدرجة في مهمتين منطقتي المنطقية: Winowhy و Commonsenseqa.أظهر إجراء مزيد من التحليل فوائد فئات متعددة من المعرفة، ولكن مشاكل حول الكميات والمتضادات لا تزال تحديا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا