ترغب بنشر مسار تعليمي؟ اضغط هنا

تخدعني مرتين: الاستلام من جامعة ويكيبيديا

Fool Me Twice: Entailment from Wikipedia Gamification

182   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نطلق سراح Foodwice (FM2 لفترة قصيرة)، وهي مجموعة بيانات كبيرة من أزواج الاستلام الصعبة التي تم جمعها من خلال لعبة متعة متعددة اللاعبين.تشجع Gameification على الأمثلة العدائية، وخفضت بشكل كبير عدد الأمثلة التي يمكن حلها باستخدام اختصارات "مقارنة بمشارات البيانات الاستقالة الأخرى.يتم عرض اللاعبين بمهامين.تطلب المهمة الأولى من اللاعب كتابة مطالبة معقولة بناء على الأدلة من صفحة ويكيبيديا.والثاني يظهر اثنين من المطالبات المعقولة التي كتبها لاعبين آخرون، واحدة منها خاطئة، والهدف هو تحديد الأمر قبل أن ينفد الوقت.يدفع اللاعبون "" لرؤية القرائن المستردة من مجموعة الأدلة: كلما زاد عدد الأدلة على احتياجات اللاعب، فإن المطالبة الصعبة.تؤدي اللعبة - اللعب بين اللاعبين الدوافع إلى استراتيجيات متنوعة لصياغة المطالبات، مثل الاستدلال الزمني وتحويل الأدلة غير المرتبطة، ونتائج بيانات عالية الجودة لمهام استرجاع الأدلة والأدلة.نحن نفتح المصدر DataSet ورمز اللعبة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتطلب العديد من التطبيقات توليد ملخصات مصممة خصيصا لاحتياجات معلومات المستخدم، أي نواياها. الأساليب التي تعبر عن النية عبر استعلامات المستخدم الصريحة تسقط قصيرة عند التفسير الاستعلام هو شخصي. توجد عدة مجموعات من مجموعات البيانات للتخصيص مع النوايا ال موضوعية حيث، لكل وثيقة ونوايا (E.G.، Weather ")، تكفي موجز واحد لجميع المستخدمين. لا توجد مجموعات البيانات، ومع ذلك، بالنسبة للمؤلفة الذاتية (E.G.، الأماكن المثيرة للاهتمام ") حيث سيقدم المستخدمون المختلفون ملخصات مختلفة. نحن نقدم العانة، أول مجموعة البيانات لتقييم أنظمة استخراج الملخص الذاتي. تحتوي STALUME على ثلاثة أفراد (وثيقة، نية، ملخص) ثلاثة توائم أكثر من 48 صفحة ويكيبيديا، مع عشرة نوبة ذاتي اختلاف ذاتي، والتي توفرها 103 فردا على الترك الميكانيكي. نوضح إحصائيا أن النوايا في SARMENT تختلف بشكل منهجي في الذاتية. للإشارة إلى فائدة SUTTUME، نستكشف مجموعة من خوارزميات أساسية لتلخيص استخراجي ذاتي وإظهار أن (I) كما هو متوقع، فإن النهج القائمة على سبيل المثال، من الأفضل أن تلتقط النوايا ذاتية من تلك القائمة على الاستعلام، و (2) هناك نطاق واسع لتحسينه خوارزميات الأساس، وبالتالي تحفز المزيد من الأبحاث حول هذه المشكلة الصعبة.
يوفر الإعلان السياقي للمعلنين الفرصة لاستهداف السياق الأكثر صلة بإعلاناتهم. يجعل مجموعة متنوعة كبيرة من الموضوعات المحتملة تحديا للغاية لجمع وثائق التدريب لبناء نموذج تصنيف إشراف أو يؤلف قواعد مكتوبة للخبراء في نظام تصنيف قائم على القواعد. علاوة على ذلك، في التصنيف الفائق الحبيبات، غالبا ما تتداخل فئات مختلفة أو تعايشها، مما يجعل من الصعب تصنيفها بدقة. في هذا العمل، نقترح Wiki2CAT، وهي طريقة لمعالجة تصنيف نصي كبير الحجم من خلال النقر على الرسم البياني للفئة Wikipedia. يتم تعيين الفئات في تصنيف IAB أولا إلى فئة العقد في الرسم البياني. ثم يتم نشر الملصق عبر الرسم البياني للحصول على قائمة بمستندات Wikipedia المسمى للحث على نصوص النصوص. تعد الطريقة مثالية لمشاكل التصنيف واسعة النطاق لأنها لا تتطلب أي مستند يدويا أو قواعد يدويا أو كلمات أساسية. يتم قياس الطريقة المقترحة مع مختلف خطوط الأساس القائمة على التعلم والكلمات الرئيسية وتجسد أداء تنافسي على مجموعات البيانات المتوفرة للجمهور ومجموعة بيانات جديدة تحتوي على أكثر من 300 فئة واحدة من الفئات الجميلة.
أصبحت نماذج لغة ملثم بسرعة قياسي فعلي عند معالجة النص. في الآونة الأخيرة، اقترح العديد من الأساليب زيادة إثراء تمثيلات Word مع مصادر المعرفة الخارجية مثل الرسوم البيانية المعرفة. ومع ذلك، يتم وضع هذه النماذج وتقييمها في إعداد أحادي فقط. في هذا العمل، نقترح مهمة تنبؤات كيان مستقلة في اللغة كإجراء تدريب متوسط ​​لتمثيلات الكلمات البرية على دلالات الكيان وجسم الفجوة عبر لغات مختلفة عن طريق المفردات المشتركة للكيانات. نظهر أن نهجنا يضجع بفعالية إلى معرفة جديدة من المعرفة المعجمية في النماذج العصبية، مما يحسن أدائها في مهام دلالية مختلفة في إعداد Croadlingual Zero-Shot. كميزة إضافية، لا يتطلب التدريب الوسيط لدينا أي مدخلات تكميلية، مما يسمح بتطبيق نماذجنا على مجموعات بيانات جديدة على الفور. في تجاربنا، نستخدم مقالات ويكيبيديا تصل إلى 100 لغة وتراقب بالفعل مكاسب متسقة مقارنة مع خطوط الأساس القوية عند التنبؤ بالكيانات باستخدام فقط Wikipedia الإنجليزية. يؤدي إضافة لغات إضافية أخرى إلى تحسينات في معظم المهام حتى نقطة معينة، ولكن عموما وجدنا أنها غير تافهة على تحسين التحسينات في عملية تحويل النموذج عن طريق التدريب على كميات متزايدة من أي وقت مضى لغات ويكيبيديا.
تقدم هذه الدراسة وتحليلات WikitalkEdit وديجمات من المحادثات وتعديل التواريخ من ويكيبيديا، للبحث في التعاون عبر الإنترنت ونمذجة المحادثة. تضم DataSet ثلاث مرات حوار من صفحات الحديث Wikipedia، وتحرير الإجراءات على المقالات المقابلة التي تتم مناقشتها. ن ظرا لكيفية دعم البيانات الفهم الكلاسيكي للمطابقة النمط، حيث تتوقع العاطفة الإيجابية واستخدام الضمائر ذات الشخص الأول تغييرا عاطفيا إيجابي في مساهم ويكيبيديا. ومع ذلك، فإنهم لا يتوقعون سلوك التحرير. من ناحية أخرى، فإن ردود الفعل التي تم استدعاء الوكلاء والنقد، والمراجع إلى قواعد المجتمع في ويكيبيديا، من المرجح أن تقنع المساهم في أداء التعديلات ولكنها أقل عرضة للتأدي إلى مشاعر إيجابية. لقد قمنا بتطوير مصنفات أساسية مدربة على ميزات روبرتا مدربة مسبقا والتي يمكن أن تتنبأ بالتغيير التحريري بدرجة F1 من .54، بالمقارنة مع درجة F1 من .66 للتنبؤ بالتغيير العاطفي. كما يتم توفير تحليل تشخيصي للأخطاء الاستمرارية. نستنتج مع التطبيقات والتوصيات المحتملة للعمل في المستقبل. تتوفر DataSet علنا ​​لمجتمع البحث في https://github.com/kj2013/wikitalkedit/.
التلخصات المتبقية هي مهمة صعبة لا توجد موارد علمية عبر اللغات المتاحة حاليا. للتغلب على عدم وجود مورد عالي الجودة، نقدم مجموعة بيانات جديدة لتلخيص أحادي اللغة وتبادر بالنظر إلى الزوج الإنجليزي الألماني. نقوم بجمع بيانات عالية الجودة العالية والعالمية من SPEKTRUM DER WISSENSCHAFT، والتي تنشر ملخصات علمية ألمانية مكتوب بشرية من مقالات علمية باللغة الإنجليزية حول مختلف الموضوعات. مجموعة بيانات Spektrum التي تم إنشاؤها صغيرة؛ لذلك، نحث مجموعة بيانات مماثلة من بوابة علوم ويكيبيديا لاستكمالها. تتكون DataSet Wikipedia من مقالات باللغة الإنجليزية والألمانية، والتي يمكن استخدامها في تلخيص أحادي ومقاطع. علاوة على ذلك، نقدم تحليلا كميا لمجموعات البيانات ونتائج التجارب التجريبية مع العديد من نماذج تلخيص الاستخراجية والمخفية القائمة. تشير النتائج إلى جدوى وفيد بيانات البيانات المقترحة لتلخيص أحادي وطني وتبادل اللغات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا