ترغب بنشر مسار تعليمي؟ اضغط هنا

لماذا يجب أن أتحول إلى اليسار؟نحو الشرط النشط لأنظمة الحوار المنطوقة.

Why Should I Turn Left? Towards Active Explainability for Spoken Dialogue Systems.

251   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نقول أن أنظمة الحوار قادرة على شرح قراراتها بنشاط يمكنها الاستفادة من المنطق المعني.نحن نحفز سبب هذه الاستراتيجية المناسبة ودمجها ضمن إطار مدير الحوار المؤخري الخاص بنا على أساس المنطق الخطي.على وجه الخصوص، يتيح ذلك نظام الحوار تقديم إجابات معقولة على السبب في الأسئلة التي تستعرضها المعلومات التي سبق إعطاءها بواسطة النظام.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

فهم اللغة المنطوقة، عادة بما في ذلك اكتشاف النوايا وملء الفتحات، هو مكون أساسي لبناء نظام حوار منطوق. تظهر الأبحاث الحديثة نتائج واعدة من خلال التعلم المشترك بين هذين المهامتين بناء على حقيقة أن ملء الفتحة والكشف عن النوايا تشارك المعرفة الدلالية. عل اوة على ذلك، فإن آلية الاهتمام تعزز التعلم المشترك لتحقيق نتائج أحدث من الفن. ومع ذلك، فإن نماذج التعلم المشتركة الحالية تتجاهل الحقائق المهمة التالية: 1. لا يتم تتبع سياق فتحة طويلة الأجل بشكل فعال، وهو أمر حاسم لملء الفتحات المستقبلية. 2. يمكن أن تكون الفتحة وعلامات الكشف عن النية مجزية بشكل متبادل، ولكن التفاعل ثنائي الاتجاه بين ملء الفتحات والكشف عن النوايا لا يزال نادرا ما تم استكشافه. في هذه الورقة، نقترح نهجا جديدا لنموذج سياق فتحة طويلة الأجل واستخدام العلاقة الدلالية بالكامل بين الفتحات والمحالة. نعتمد شبكة الذاكرة ذات القيمة الرئيسية لنموذج سياق الفتحة ديناميكيا وتتبع علامات فتحة أكثر أهمية فك شفرة من قبل، والتي يتم تغذيتها بعد ذلك في وحدة فك التشفير الخاصة بنا للحصول على علامات الفتحة. علاوة على ذلك، يتم استخدام معلومات الذاكرة الدائرية لأداء الكشف عن النية، وتحسين المهام المتبادلة من خلال التحسين العالمي. تظهر التجارب على معيار ATIS و SHITS DataSets أن نموذجنا يحقق أداء حديثة وتفوق على طرق أخرى، خاصة بالنسبة لمهمة ملء الفتحة.
تعد القدرة على اتخاذها بطريقة بطلاقة (أي تأخير طويل للاستجابة أو الانقطاعات المتكررة) جوانب أساسية من أي نظام حوار منطوق.ومع ذلك، فإن خدمات التعرف على الكلام العملي تحفز عادة تأخير استجابة طويل، حيث يستغرق الأمر وقتا قبل معالجة كلام المستخدم.هناك قدر كبير من الأبحاث التي تشير إلى أن البشر يحققون أوقات الاستجابة السريعة من خلال إظهار ما سيقوله المحاور ويقدر إكمال الدورات المقبلة.في هذا العمل، نقوم بتنفيذ هذه الآلية في نظام حوار منطوق تدريجي، باستخدام نموذج لغة يولد العقود المستقبلية المحتملة لمشروع نقاط الإنجاز القادمة.من الناحية النظرية، قد يجعل هذا النظام أكثر استجابة، في حين لا يزال الوصول إلى المعلومات الدلالية التي لم تتم معالجتها بعد بواسطة التعرف على الكلام.نقوم بإجراء دراسة صغيرة تشير إلى أن هذا نهج قابل للحياة لأنظمة الحوار العملية، وأن هذا اتجاه واعد للبحث في المستقبل.
يقتصر معظم العمل المسبق على أنظمة الحوار الموجهة نحو المهام على دعم واجهات برمجة التطبيقات في المجال.ومع ذلك، قد يكون لدى المستخدمين طلبات خارج نطاق واجهات برمجة التطبيقات هذه.يركز هذا العمل على تحديد طلبات المستخدمين هذه.تعتمد الطرق الحالية لهذه الم همة بشكل أساسي على النماذج المدربة مسبقا بشكل صحيح على البيانات المشروحة الكبيرة.نقترح طريقة رواية، ريد، بناء على تقدير التعلم والكثافة التكيفية.يمكن تطبيق Rede على حالات الطابع الصفرية، ويتدرك بسرعة كاشف عالية الأداء مع بعض الطلقات فقط عن طريق تحديث أقل من المعلمات 3K.نوضح أداء Rede التنافسي في بيانات DSTC9 ومجموعة اختبار مجمعة حديثا.
تهدف هذه الورقة إلى تقديم نظرة عامة شاملة للتطورات الأخيرة في تتبع حكمة الحوار (DST) لأنظمة المحادثات الموجهة نحو المهام.نقدم المهمة، وخاصة البيانات الرئيسية التي تم استغلالها وكذلك مقاييس تقييمها، ونحن نحلل العديد من النهج المقترحة.نحن نميز بين نماذ ج DST غير الثابتة، والتي تتنبأ بمجموعة ثابتة من دول الحوار، ونماذج الأطباق الديناميكية، والتي يمكن أن تتنبؤ حوار الحوار حتى عندما تتغير عملية الأونولوجيا.ونناقش أيضا قدرة النموذج على تتبع النطاقات الفردية أو المتعددة والقياس إلى مجالات جديدة، سواء من حيث نقل المعرفة والتعلم الصفر.نحن نغطي فترة من عام 2013 إلى 2020، مما يدل على زيادة كبيرة في أساليب مجال متعددة، ومعظمها باستخدام نماذج اللغة المدربة مسبقا.
في أنظمة الحوار الموجهة نحو الأهداف، يقدم المستخدمون المعلومات من خلال قيم الفتحة لتحقيق أهداف محددة. عمليا، يمكن أن تكون بعض مجموعات قيم الفتحة غير صالحة وفقا للمعرفة الخارجية. على سبيل المثال، مزيج من بيتزا الجبن "(عنصر القائمة) وملفات تعريف الارتب اط OREO" (تتصدر) من كلام الإدخال يمكن أن أطلب بيتزا جبنة مع ملفات تعريف الارتباط Oreo على القمة؟ "تعويضات مثل هذه المجموعات غير الصالحة وفقا للقائمة من مطعم العمل. تسمح أنظمة الحوار التقليدية بإعدام قواعد التحقق من الصحة كخطوة بعد المعالجة بعد أن تم ملء الفتحات التي يمكن أن تؤدي إلى تراكم الخطأ. في هذه الورقة، نقوم بإضفاء الطابع الرسمي على قيود فتحة مدفوعة بالمعرفة وتقديم مهمة جديدة من اكتشاف انتهاك القيد مصحوبة ببيانات معايير. ثم نقترح طرق لإدماج المعرفة الخارجية في الكشف عن انتهاك الانتهاك في النظام والنموذج كمركز تصنيف نهاية إلى نهج ومقارنته لنهج خط أنابيب القواعد التقليدي. تجرب التجارب على مجاليين من مجموعة بيانات متعددة الأوجه من تحديات الكشف عن انتهاك القيود وتضع المرحلة للعمل في المستقبل والتحسينات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا