تعرف حلال الرياضيات العصبي الحالي دمج المعرفة المنطقية أو المجال عن طريق الاستفادة من الثوابت أو الصيغ المحددة مسبقا.ومع ذلك، نظرا لأن هذه الثوابت والصيغ هي أساسا، فإن تعميمات الحلول محدودة.في هذه الورقة، نقترح استعادة المعرفة المطلوبة صراحة من مشكلة الرياضيات.وبهذه الطريقة، يمكننا مصممة معرفة المعرفة المطلوبة Andimprove شرح الحلول.خوارمنا لدينا تأخذ مشكلة النص ومعادلات الحل كمدخل.ثم، يحاولون استنتاج المعرفة المنطقية والمجال المطلوبة عن طريق دمج المعلومات من كلا الجزأين.نبني اثنين من مجموعات بيانات الرياضيات وتظهر فعالية خوارزمياتنا التي يمكنهم استرداد المعرفة المطلوبة لحل المشكلات.
Current neural math solvers learn to incorporate commonsense or domain knowledge by utilizing pre-specified constants or formulas. However, as these constants and formulas are mainly human-specified, the generalizability of the solvers is limited. In this paper, we propose to explicitly retrieve the required knowledge from math problemdatasets. In this way, we can determinedly characterize the required knowledge andimprove the explainability of solvers. Our two algorithms take the problem text andthe solution equations as input. Then, they try to deduce the required commonsense and domain knowledge by integrating information from both parts. We construct two math datasets and show the effectiveness of our algorithms that they can retrieve the required knowledge for problem-solving.
المراجع المستخدمة
https://aclanthology.org/
شهدت مشكلة تصميم حلول NLP لمشاكل كلمة الرياضيات (MWP) نشاط بحثي مستمر ومكاسب ثابتة في دقة الاختبار. نظرا لأن الحلفل الموجودين يحققون أداء عاليا على مجموعات البيانات القياسية للمستوى الابتدائي الذي يحتوي على مشاكل في الكلمات الحسابية المجهولة الأولى،
في هذه المقالة، نتعامل مع مشكلة كلمة الرياضيات، وهي الإجابة تلقائيا على مشكلة رياضية وفقا لوصفها النصي. على الرغم من أن الطرق الحديثة أظهرت نتائجها الواعدة، فإن معظم هذه الطرق تستند إلى مخطط الجيل القائم على القوالب تؤدي إلى إمكانية تعميم محدودية. تح
في حين أن حل مشاكل كلمة الرياضيات تلقائيا تلقى اهتماما كبيرا في مجتمع NLP، فقد عالجت القليل من الأعمال مشاكل كلمة الاحتمالية على وجه التحديد.في هذه الورقة، نحن نوظف وتحليل النماذج العصبية المختلفة للإجابة على مشاكل هذه الكلمة.في نهج من خطوتين، يتم تع
ندرس مشكلة توليد مشاكل كلمة الرياضيات الحسابية (MWPS) بالنظر إلى معادلة الرياضيات التي تحدد الحساب الرياضي والسياق الذي يحدد سيناريو المشكلة.الأساليب الحالية عرضة لتوليد MWPS والتي هي إما غير صالحة للرياضيات أو لها جودة لغة غير مرضية.كما أنها إما تتج
أدت نماذج اللغة المدربة مسبقا إلى مكاسب كبيرة على مجموعة واسعة من مهام معالجة اللغة الطبيعية (NLP)، ولكنها تبين أن قيود لمهام توليد اللغة الطبيعية مع متطلبات عالية الجودة على الإخراج، مثل جيل العمولة والإعلان توليد الكلمات الرئيسية. في هذا العمل، نقد