شهدت مشكلة تصميم حلول NLP لمشاكل كلمة الرياضيات (MWP) نشاط بحثي مستمر ومكاسب ثابتة في دقة الاختبار. نظرا لأن الحلفل الموجودين يحققون أداء عاليا على مجموعات البيانات القياسية للمستوى الابتدائي الذي يحتوي على مشاكل في الكلمات الحسابية المجهولة الأولى، إلا أن هذه المشكلات غالبا ما يتم حلها في كثير من الأحيان "مع الجزء الأكبر من الاهتمام بالبحث إلى MWPS أكثر تعقيدا. في هذه الورقة، قصرنا انتباهنا إلى اللغة الإنجليزية MWPs تدرس في الصفوف الأربعة والأقل. نحن نقدم دليلا قويا على أن وحدات MWP الحالية تعتمد على الاستدلال الضحلة لتحقيق أداء عال في مجموعات البيانات القياسية. تحقيقا لهذه الغاية، نظهر أن حفلات MWP التي لا تملك الوصول إلى السؤال المطلوب في MWP، لا يزال بإمكانك حل جزء كبير من MWPS. وبالمثل، فإن النماذج التي تعالج mwps كحقيبة من الكلمات يمكن أن تحقق أيضا دقة عالية بشكل مدهش. علاوة على ذلك، نقدم مجموعة بيانات تحدي، Svamp، تم إنشاؤها من خلال تطبيق الاختلافات المختارة بعناية على الأمثلة التي تم أخذ عينات منها من مجموعات البيانات الحالية. إن أفضل الدقة التي تحققت بها النماذج الحديثة أقل بكثير على Svamp، وبالتالي إظهار الكثير لا يزال يتعين القيام به حتى لأبسط MWPS.
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered solved'' with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
المراجع المستخدمة
https://aclanthology.org/
تعرف حلال الرياضيات العصبي الحالي دمج المعرفة المنطقية أو المجال عن طريق الاستفادة من الثوابت أو الصيغ المحددة مسبقا.ومع ذلك، نظرا لأن هذه الثوابت والصيغ هي أساسا، فإن تعميمات الحلول محدودة.في هذه الورقة، نقترح استعادة المعرفة المطلوبة صراحة من مشكلة
في هذه المقالة، نتعامل مع مشكلة كلمة الرياضيات، وهي الإجابة تلقائيا على مشكلة رياضية وفقا لوصفها النصي. على الرغم من أن الطرق الحديثة أظهرت نتائجها الواعدة، فإن معظم هذه الطرق تستند إلى مخطط الجيل القائم على القوالب تؤدي إلى إمكانية تعميم محدودية. تح
في حين أن حل مشاكل كلمة الرياضيات تلقائيا تلقى اهتماما كبيرا في مجتمع NLP، فقد عالجت القليل من الأعمال مشاكل كلمة الاحتمالية على وجه التحديد.في هذه الورقة، نحن نوظف وتحليل النماذج العصبية المختلفة للإجابة على مشاكل هذه الكلمة.في نهج من خطوتين، يتم تع
كشفت الدراسات الحديثة عن تهديد أمني لنماذج معالجة اللغة الطبيعية (NLP)، تسمى هجوم الوكيل. يمكن أن تحافظ نماذج الضحايا الحفاظ على أداء تنافسي على عينات نظيفة أثناء التصرف بشكل غير واضح على العينات ذات كلمة مشغلة محددة إدراجها. عادة ما تتحمل أساليب الم
ركزت البحث في NLP بشكل أساسي على الأسئلة العفوية، بهدف إيجاد طرق سريعة وموثوقة لمطابقة الاستعلام إلى إجابة.ومع ذلك، فإن الخطاب البشري ينطوي على أكثر من ذلك: أنه يحتوي على أسئلة غير قانونية منتشرة لتحقيق أهداف متتالية محددة.في هذه الورقة، نحقق في هذا