تهدف مهمة Sereval 4 إلى إيجاد خيار مناسب من المرشحين المتعددين لحل مهمة فهم القراءة في الجهاز.تقترح معظم الأساليب الموجودة على Concat السؤال والخيار معا لتشكيل نموذج على دراية بالسياق.ومع ذلك، نقول أن التسلسلات المباشرة يمكن أن توفر فقط سياقا محظوظا فقط لمهمة MRC، مما يتجاهل المواقف المحددة للخيار بالنسبة للسؤال.في هذه الورقة، نقترح نموذج رواية MRC عن طريق تعبئة الخيارات في السؤال لإنتاج سياق جيد المحبوس (يعرف بأنه ملخص) يمكن أن تكشف بشكل أفضل عن العلاقة بين الخيار والسؤال.نقوم بإجراء سلسلة من التجارب على مجموعة البيانات المعينة، وتظهرت النتائج أن نهجنا يفوق النظرات الأخرى النظراء إلى حد كبير.
SemEval task 4 aims to find a proper option from multiple candidates to resolve the task of machine reading comprehension. Most existing approaches propose to concat question and option together to form a context-aware model. However, we argue that straightforward concatenation can only provide a coarse-grained context for the MRC task, ignoring the specific positions of the option relative to the question. In this paper, we propose a novel MRC model by filling options into the question to produce a fine-grained context (defined as summary) which can better reveal the relationship between option and question. We conduct a series of experiments on the given dataset, and the results show that our approach outperforms other counterparts to a large extent.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة النظام الفائز ل SubTask 2 والنظام الموضح الثاني لبرنامج التعرية الفرعية 1 في مهمة Semeval 2021 4: قراءة القراءة من معنى مجردة.نقترح استخدام جهاز تمييز Electra المصدر الذي يزعجني اختيار أفضل كلمة مجردة من خمسة مرشحين.يتم إدخال آلية الاه
تقدم هذه الورقة المهمة المشتركة Semeval-2021 4: قراءة الفهم من معنى مجردة (Recam). تم تصميم هذه المهمة المشتركة للمساعدة في تقييم قدرة الآلات في تمثيل وفهم مفهوم مجردة. يتعين على النظام المقابل، من المتوقع أن يختار نظام المشاركة، الإجابة الصحيحة من خ
في هذه الورقة، نقدم مساهمتنا في مهمة Semeval-2021 1: تنبؤ التعقيد المعجمي، حيث ندمج الممتلكات اللغوية والإحصائية والدلية للكلمة المستهدفة وسياقها كميزات ضمن إطار تعلم الجهاز (ML) للتنبؤ بالتعقيد المعجميوبعدعلى وجه الخصوص، نستخدم شركة Bert Contentrali
تصف هذه الورقة نظامنا للحصول على مهمة Semeval-2021 4: قراءة الفهم من معنى مجردة.لإنجاز هذه المهمة، نستخدم الهندسة المعمارية لشبكة إيلاءات الرسوم البيانية المعززة للمعرفة مع استراتيجية تحويل الفضاء الدلالي الردد.إنه يرفع المعرفة غير المتجانسة لتعلم ال
تركز معظم مهام الإجابة على معظم الأسئلة على التنبؤ بإجابات ملموسة، مثل الكيانات المسماة.يمكن تحقيق هذه المهام عادة عن طريق فهم السياقات دون وجود معلومات إضافية مطلوبة.في قراءة الفهم من المهمة المعنى التجريدي (إعادة التقييم)، يتم تقديم الإجابات المجرد